EVOLUTION-MANAGER
Edit File: shapiro.test.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><title>R: Shapiro-Wilk Normality Test</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="R.css" /> </head><body> <table width="100%" summary="page for shapiro.test {stats}"><tr><td>shapiro.test {stats}</td><td style="text-align: right;">R Documentation</td></tr></table> <h2>Shapiro-Wilk Normality Test</h2> <h3>Description</h3> <p>Performs the Shapiro-Wilk test of normality. </p> <h3>Usage</h3> <pre> shapiro.test(x) </pre> <h3>Arguments</h3> <table summary="R argblock"> <tr valign="top"><td><code>x</code></td> <td> <p>a numeric vector of data values. Missing values are allowed, but the number of non-missing values must be between 3 and 5000.</p> </td></tr> </table> <h3>Value</h3> <p>A list with class <code>"htest"</code> containing the following components: </p> <table summary="R valueblock"> <tr valign="top"><td><code>statistic</code></td> <td> <p>the value of the Shapiro-Wilk statistic.</p> </td></tr> <tr valign="top"><td><code>p.value</code></td> <td> <p>an approximate p-value for the test. This is said in Royston (1995) to be adequate for <code>p.value < 0.1</code>.</p> </td></tr> <tr valign="top"><td><code>method</code></td> <td> <p>the character string <code>"Shapiro-Wilk normality test"</code>.</p> </td></tr> <tr valign="top"><td><code>data.name</code></td> <td> <p>a character string giving the name(s) of the data.</p> </td></tr> </table> <h3>Source</h3> <p>The algorithm used is a C translation of the Fortran code described in Royston (1995). The calculation of the p value is exact for <i>n = 3</i>, otherwise approximations are used, separately for <i>4 ≤ n ≤ 11</i> and <i>n ≥ 12</i>. </p> <h3>References</h3> <p>Patrick Royston (1982). An extension of Shapiro and Wilk's <i>W</i> test for normality to large samples. <em>Applied Statistics</em>, <b>31</b>, 115–124. doi: <a href="https://doi.org/10.2307/2347973">10.2307/2347973</a>. </p> <p>Patrick Royston (1982). Algorithm AS 181: The <i>W</i> test for Normality. <em>Applied Statistics</em>, <b>31</b>, 176–180. doi: <a href="https://doi.org/10.2307/2347986">10.2307/2347986</a>. </p> <p>Patrick Royston (1995). Remark AS R94: A remark on Algorithm AS 181: The <i>W</i> test for normality. <em>Applied Statistics</em>, <b>44</b>, 547–551. doi: <a href="https://doi.org/10.2307/2986146">10.2307/2986146</a>. </p> <h3>See Also</h3> <p><code><a href="qqnorm.html">qqnorm</a></code> for producing a normal quantile-quantile plot. </p> <h3>Examples</h3> <pre> shapiro.test(rnorm(100, mean = 5, sd = 3)) shapiro.test(runif(100, min = 2, max = 4)) </pre> <hr /><div style="text-align: center;">[Package <em>stats</em> version 3.6.0 <a href="00Index.html">Index</a>]</div> </body></html>