EVOLUTION-MANAGER
Edit File: sheet-geometry.html
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="generator" content="pandoc" /> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Sheet Geometry</title> <style type="text/css">code{white-space: pre;}</style> <style type="text/css" data-origin="pandoc"> a.sourceLine { display: inline-block; line-height: 1.25; } a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; } a.sourceLine:empty { height: 1.2em; } .sourceCode { overflow: visible; } code.sourceCode { white-space: pre; position: relative; } div.sourceCode { margin: 1em 0; } pre.sourceCode { margin: 0; } @media screen { div.sourceCode { overflow: auto; } } @media print { code.sourceCode { white-space: pre-wrap; } a.sourceLine { text-indent: -1em; padding-left: 1em; } } pre.numberSource a.sourceLine { position: relative; left: -4em; } pre.numberSource a.sourceLine::before { content: attr(data-line-number); position: relative; left: -1em; text-align: right; vertical-align: baseline; border: none; pointer-events: all; display: inline-block; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; padding: 0 4px; width: 4em; color: #aaaaaa; } pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; } div.sourceCode { } @media screen { a.sourceLine::before { text-decoration: underline; } } code span.al { color: #ff0000; font-weight: bold; } /* Alert */ code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */ code span.at { color: #7d9029; } /* Attribute */ code span.bn { color: #40a070; } /* BaseN */ code span.bu { } /* BuiltIn */ code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */ code span.ch { color: #4070a0; } /* Char */ code span.cn { color: #880000; } /* Constant */ code span.co { color: #60a0b0; font-style: italic; } /* Comment */ code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */ code span.do { color: #ba2121; font-style: italic; } /* Documentation */ code span.dt { color: #902000; } /* DataType */ code span.dv { color: #40a070; } /* DecVal */ code span.er { color: #ff0000; font-weight: bold; } /* Error */ code span.ex { } /* Extension */ code span.fl { color: #40a070; } /* Float */ code span.fu { color: #06287e; } /* Function */ code span.im { } /* Import */ code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */ code span.kw { color: #007020; font-weight: bold; } /* Keyword */ code span.op { color: #666666; } /* Operator */ code span.ot { color: #007020; } /* Other */ code span.pp { color: #bc7a00; } /* Preprocessor */ code span.sc { color: #4070a0; } /* SpecialChar */ code span.ss { color: #bb6688; } /* SpecialString */ code span.st { color: #4070a0; } /* String */ code span.va { color: #19177c; } /* Variable */ code span.vs { color: #4070a0; } /* VerbatimString */ code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */ </style> <script> // apply pandoc div.sourceCode style to pre.sourceCode instead (function() { var sheets = document.styleSheets; for (var i = 0; i < sheets.length; i++) { if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue; try { var rules = sheets[i].cssRules; } catch (e) { continue; } for (var j = 0; j < rules.length; j++) { var rule = rules[j]; // check if there is a div.sourceCode rule if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") continue; var style = rule.style.cssText; // check if color or background-color is set if (rule.style.color === '' || rule.style.backgroundColor === '') continue; // replace div.sourceCode by a pre.sourceCode rule sheets[i].deleteRule(j); sheets[i].insertRule('pre.sourceCode{' + style + '}', j); } } })(); </script> <style type="text/css">body { background-color: #fff; margin: 1em auto; max-width: 700px; overflow: visible; padding-left: 2em; padding-right: 2em; font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 14px; line-height: 1.35; } #header { text-align: center; } #TOC { clear: both; margin: 0 0 10px 10px; padding: 4px; width: 400px; border: 1px solid #CCCCCC; border-radius: 5px; background-color: #f6f6f6; font-size: 13px; line-height: 1.3; } #TOC .toctitle { font-weight: bold; font-size: 15px; margin-left: 5px; } #TOC ul { padding-left: 40px; margin-left: -1.5em; margin-top: 5px; margin-bottom: 5px; } #TOC ul ul { margin-left: -2em; } #TOC li { line-height: 16px; } table { margin: 1em auto; border-width: 1px; border-color: #DDDDDD; border-style: outset; border-collapse: collapse; } table th { border-width: 2px; padding: 5px; border-style: inset; } table td { border-width: 1px; border-style: inset; line-height: 18px; padding: 5px 5px; } table, table th, table td { border-left-style: none; border-right-style: none; } table thead, table tr.even { background-color: #f7f7f7; } p { margin: 0.5em 0; } blockquote { background-color: #f6f6f6; padding: 0.25em 0.75em; } hr { border-style: solid; border: none; border-top: 1px solid #777; margin: 28px 0; } dl { margin-left: 0; } dl dd { margin-bottom: 13px; margin-left: 13px; } dl dt { font-weight: bold; } ul { margin-top: 0; } ul li { list-style: circle outside; } ul ul { margin-bottom: 0; } pre, code { background-color: #f7f7f7; border-radius: 3px; color: #333; white-space: pre-wrap; } pre { border-radius: 3px; margin: 5px 0px 10px 0px; padding: 10px; } pre:not([class]) { background-color: #f7f7f7; } code { font-family: Consolas, Monaco, 'Courier New', monospace; font-size: 85%; } p > code, li > code { padding: 2px 0px; } div.figure { text-align: center; } img { background-color: #FFFFFF; padding: 2px; border: 1px solid #DDDDDD; border-radius: 3px; border: 1px solid #CCCCCC; margin: 0 5px; } h1 { margin-top: 0; font-size: 35px; line-height: 40px; } h2 { border-bottom: 4px solid #f7f7f7; padding-top: 10px; padding-bottom: 2px; font-size: 145%; } h3 { border-bottom: 2px solid #f7f7f7; padding-top: 10px; font-size: 120%; } h4 { border-bottom: 1px solid #f7f7f7; margin-left: 8px; font-size: 105%; } h5, h6 { border-bottom: 1px solid #ccc; font-size: 105%; } a { color: #0033dd; text-decoration: none; } a:hover { color: #6666ff; } a:visited { color: #800080; } a:visited:hover { color: #BB00BB; } a[href^="http:"] { text-decoration: underline; } a[href^="https:"] { text-decoration: underline; } code > span.kw { color: #555; font-weight: bold; } code > span.dt { color: #902000; } code > span.dv { color: #40a070; } code > span.bn { color: #d14; } code > span.fl { color: #d14; } code > span.ch { color: #d14; } code > span.st { color: #d14; } code > span.co { color: #888888; font-style: italic; } code > span.ot { color: #007020; } code > span.al { color: #ff0000; font-weight: bold; } code > span.fu { color: #900; font-weight: bold; } code > span.er { color: #a61717; background-color: #e3d2d2; } </style> </head> <body> <h1 class="title toc-ignore">Sheet Geometry</h1> <div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" data-line-number="1"><span class="kw">library</span>(readxl)</a></code></pre></div> <p><code>readxl::read_excel()</code> brings data from a rectangle of cells into R as a data frame or, more specifically, a <a href="http://tibble.tidyverse.org/reference/tibble.html">tibble</a>.</p> <p>The extent of the data rectangle can be determined in various ways:</p> <ul> <li><strong>Discovered</strong>: By default, <code>read_excel()</code> uses the smallest rectangle that contains the non-empty cells. It “shrink wraps” the data.</li> <li><strong>Bounded</strong>: The <code>skip</code> and <code>n_max</code> arguments constrain <code>read_excel()</code>’s discovery process with respect to rows. At least <code>skip</code> spreadsheet rows will be skipped or ignored and at most <code>n_max</code> spreadsheet rows will be considered as data. Compared to the default of <strong>discovery</strong>, these arguments can only lead to making the output tibble smaller.</li> <li><strong>Set</strong>: The <code>range</code> argument is taken literally, even if that means you will have leading or trailing rows or columns filled with <code>NA</code>. If you ask for <code>range = "A1:D4"</code>, you are guaranteed to get a tibble with 4 columns (A through D) and either 3 rows (<code>col_names = TRUE</code>, default) or 4 rows (<code>col_names = FALSE</code>).</li> <li><strong>Mixed</strong>: In typical use, <code>read_excel()</code>’s geometry arguments often imply that certain limits are <strong>discovered</strong> while others are <strong>bounded</strong> or <strong>set</strong>. This will be more clear in the concrete examples below.</li> </ul> <p>For now, here are a few ways <code>read_excel()</code> can look when you take control of the geometry:</p> <div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb2-1" data-line-number="1"><span class="kw">read_excel</span>(<span class="st">"yo.xlsx"</span>, <span class="dt">skip =</span> <span class="dv">5</span>)</a> <a class="sourceLine" id="cb2-2" data-line-number="2"><span class="kw">read_excel</span>(<span class="st">"yo.xlsx"</span>, <span class="dt">n_max =</span> <span class="dv">100</span>)</a> <a class="sourceLine" id="cb2-3" data-line-number="3"><span class="kw">read_excel</span>(<span class="st">"yo.xlsx"</span>, <span class="dt">skip =</span> <span class="dv">5</span>, <span class="dt">n_max =</span> <span class="dv">100</span>)</a> <a class="sourceLine" id="cb2-4" data-line-number="4"><span class="kw">read_excel</span>(<span class="st">"yo.xlsx"</span>, <span class="dt">range =</span> <span class="st">"C1:E7"</span>)</a> <a class="sourceLine" id="cb2-5" data-line-number="5"><span class="kw">read_excel</span>(<span class="st">"yo.xlsx"</span>, <span class="dt">range =</span> <span class="kw">cell_rows</span>(<span class="dv">6</span><span class="op">:</span><span class="dv">23</span>))</a> <a class="sourceLine" id="cb2-6" data-line-number="6"><span class="kw">read_excel</span>(<span class="st">"yo.xlsx"</span>, <span class="dt">range =</span> <span class="kw">cell_cols</span>(<span class="st">"B:D"</span>))</a> <a class="sourceLine" id="cb2-7" data-line-number="7"><span class="kw">read_excel</span>(<span class="st">"yo.xlsx"</span>, <span class="dt">range =</span> <span class="kw">anchored</span>(<span class="st">"C4"</span>, <span class="dt">dim =</span> <span class="kw">c</span>(<span class="dv">3</span>, <span class="dv">2</span>)))</a></code></pre></div> <div id="little-known-excel-facts" class="section level2"> <h2>Little known Excel facts</h2> <p>readxl’s behavior and interface may be easier to understand if you understand this about Excel:</p> <blockquote> <p>Cells you can see don’t necessarily exist. Cells that look blank aren’t necessarily so.</p> </blockquote> <p>Among lots of other information, Excel files obviously must contain information on each cell. Let’s use the word “item” to denote one cell’s-worth of info.</p> <p>Just because you see a cell on the screen in Excel, that doesn’t mean there’s a corresponding item on file. Why? Because Excel presents a huge gridded canvas for you to write on. Until you actually populate a cell, though, it doesn’t really exist.</p> <p>The stream of cell items describes the existing cells, going from upper left to lower right, travelling by row. Blank cells simply do not exist in it.</p> <p>Ah, but what is a blank cell? Some cells appear blank to the naked eye but are not considered so by Excel and, indeed, are represented by a cell item. This happens when a cell has no content but does have an associated format. This format could have been applied directly to a single cell or, more often, indirectly via formatting applied to an entire row or column. Once a human has spent some quality time with a spreadsheet, many seemingly empty cells will bear a format and will thus have an associated cell item.</p> <div id="implications-for-readxl" class="section level3"> <h3>Implications for readxl</h3> <p>readxl only reads cell items that have content. It ignores cell items that exist strictly to convey formatting.</p> <p>The tibble returned by readxl will often cover cells that are empty in the spreadsheet, filled with <code>NA</code>. But only because there was some other reason for the associated row or column to exist: actual data or user-specified geometry.</p> </div> </div> <div id="skip-and-n_max" class="section level2"> <h2><code>skip</code> and <code>n_max</code></h2> <p><code>skip</code> and <code>n_max</code> are the “entry-level” solution for controlling the data rectangle. They work only in the row direction. Column-wise, you’re letting readxl discover which columns are populated.</p> <p>If you specify <code>range</code> (covered below), <code>skip</code> and <code>n_max</code> are ignored.</p> <div id="skip" class="section level3"> <h3><code>skip</code></h3> <p>The <code>skip</code> argument tells <code>read_excel()</code> to start looking for populated cells after skipping at least <code>skip</code> rows. If the new start point begins with 1 or more empty rows, <code>read_excel()</code> will skip even more before it starts reading from the sheet.</p> <p>Here’s a screen shot of the <code>geometry.xlsx</code> example sheet that ships with readxl, accessible via <code>readxl_example("geometry.xlsx")</code>.</p> <p><img src="" width="70%" /></p> <p>By default, <code>read_excel()</code> just discovers the data rectangle:</p> <div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb3-1" data-line-number="1"><span class="kw">read_excel</span>(<span class="kw">readxl_example</span>(<span class="st">"geometry.xlsx"</span>))</a> <a class="sourceLine" id="cb3-2" data-line-number="2"><span class="co">#> # A tibble: 3 x 3</span></a> <a class="sourceLine" id="cb3-3" data-line-number="3"><span class="co">#> B3 C3 D3 </span></a> <a class="sourceLine" id="cb3-4" data-line-number="4"><span class="co">#> <chr> <chr> <chr></span></a> <a class="sourceLine" id="cb3-5" data-line-number="5"><span class="co">#> 1 B4 C4 D4 </span></a> <a class="sourceLine" id="cb3-6" data-line-number="6"><span class="co">#> 2 B5 C5 D5 </span></a> <a class="sourceLine" id="cb3-7" data-line-number="7"><span class="co">#> 3 B6 C6 D6</span></a></code></pre></div> <p>If you explicitly skip one row, note that <code>read_excel()</code> still skips row 2, which is also empty, leading to the same result as before:</p> <div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb4-1" data-line-number="1"><span class="kw">read_excel</span>(<span class="kw">readxl_example</span>(<span class="st">"geometry.xlsx"</span>), <span class="dt">skip =</span> <span class="dv">1</span>)</a> <a class="sourceLine" id="cb4-2" data-line-number="2"><span class="co">#> # A tibble: 3 x 3</span></a> <a class="sourceLine" id="cb4-3" data-line-number="3"><span class="co">#> B3 C3 D3 </span></a> <a class="sourceLine" id="cb4-4" data-line-number="4"><span class="co">#> <chr> <chr> <chr></span></a> <a class="sourceLine" id="cb4-5" data-line-number="5"><span class="co">#> 1 B4 C4 D4 </span></a> <a class="sourceLine" id="cb4-6" data-line-number="6"><span class="co">#> 2 B5 C5 D5 </span></a> <a class="sourceLine" id="cb4-7" data-line-number="7"><span class="co">#> 3 B6 C6 D6</span></a></code></pre></div> <p>You can also use <code>skip</code> to skip over populated cells. In real life, this is a mighty weapon against the explanatory text that people like to include at the top of spreadsheets.</p> <div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb5-1" data-line-number="1"><span class="kw">read_excel</span>(<span class="kw">readxl_example</span>(<span class="st">"geometry.xlsx"</span>), <span class="dt">skip =</span> <span class="dv">3</span>)</a> <a class="sourceLine" id="cb5-2" data-line-number="2"><span class="co">#> # A tibble: 2 x 3</span></a> <a class="sourceLine" id="cb5-3" data-line-number="3"><span class="co">#> B4 C4 D4 </span></a> <a class="sourceLine" id="cb5-4" data-line-number="4"><span class="co">#> <chr> <chr> <chr></span></a> <a class="sourceLine" id="cb5-5" data-line-number="5"><span class="co">#> 1 B5 C5 D5 </span></a> <a class="sourceLine" id="cb5-6" data-line-number="6"><span class="co">#> 2 B6 C6 D6</span></a></code></pre></div> <p>Summary: <code>skip</code> tells <code>read_excel()</code> to skip <em>at least this many</em> spreadsheet rows before reading anything.</p> </div> <div id="n_max" class="section level3"> <h3><code>n_max</code></h3> <p>The <code>n_max</code> argument tells <code>read_excel()</code> to read at most <code>n_max</code> rows, once it has found the data rectangle. Note that <code>n_max</code> is specifically about <em>the data</em>. You still use <code>col_names</code> to express whether the first spreadsheet row should be used to create column names (default is <code>TRUE</code>).</p> <p><code>n_max = 2</code> causes us to ignore the last data row – the 3rd one – in <code>geometry.xlsx</code>.</p> <div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb6-1" data-line-number="1"><span class="kw">read_excel</span>(<span class="kw">readxl_example</span>(<span class="st">"geometry.xlsx"</span>), <span class="dt">n_max =</span> <span class="dv">2</span>)</a> <a class="sourceLine" id="cb6-2" data-line-number="2"><span class="co">#> # A tibble: 2 x 3</span></a> <a class="sourceLine" id="cb6-3" data-line-number="3"><span class="co">#> B3 C3 D3 </span></a> <a class="sourceLine" id="cb6-4" data-line-number="4"><span class="co">#> <chr> <chr> <chr></span></a> <a class="sourceLine" id="cb6-5" data-line-number="5"><span class="co">#> 1 B4 C4 D4 </span></a> <a class="sourceLine" id="cb6-6" data-line-number="6"><span class="co">#> 2 B5 C5 D5</span></a></code></pre></div> <p><code>n_max</code> is an upper bound. It will never cause empty rows to be included in the tibble. Note how we get 3 data rows here, even though <code>n_max</code> is much greater.</p> <div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb7-1" data-line-number="1"><span class="kw">read_excel</span>(<span class="kw">readxl_example</span>(<span class="st">"geometry.xlsx"</span>), <span class="dt">n_max =</span> <span class="dv">1000</span>)</a> <a class="sourceLine" id="cb7-2" data-line-number="2"><span class="co">#> # A tibble: 3 x 3</span></a> <a class="sourceLine" id="cb7-3" data-line-number="3"><span class="co">#> B3 C3 D3 </span></a> <a class="sourceLine" id="cb7-4" data-line-number="4"><span class="co">#> <chr> <chr> <chr></span></a> <a class="sourceLine" id="cb7-5" data-line-number="5"><span class="co">#> 1 B4 C4 D4 </span></a> <a class="sourceLine" id="cb7-6" data-line-number="6"><span class="co">#> 2 B5 C5 D5 </span></a> <a class="sourceLine" id="cb7-7" data-line-number="7"><span class="co">#> 3 B6 C6 D6</span></a></code></pre></div> </div> </div> <div id="range" class="section level2"> <h2><code>range</code></h2> <p>The <code>range</code> argument is the most flexible way to control geometry and is powered by the <a href="https://github.com/rsheets/cellranger#readme">cellranger</a> package.</p> <p>One huge difference from <code>skip</code> and <code>n_max</code> is that <code>range</code> is taken literally! Even if it means the returned tibble will have entire rows or columns consisting of <code>NA</code>.</p> <p>You can describe cell limits in a variety of ways:</p> <p><strong>Excel-style range</strong>: Specify a fixed rectangle with <code>range = "A1:D4"</code> or <code>range = "R1C1:R4C4"</code>. You can even prepend the worksheet name like so: <code>range = "foofy!A1:D4"</code> and it will be passed along to the <code>sheet</code> argument.</p> <p>The <code>deaths.xlsx</code> example sheet features junk rows both before and after the data rectangle. The payoff for specifying the data rectangle precisely is that we get the data frame we want, with correct guesses for the column types.</p> <div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb8-1" data-line-number="1"><span class="kw">read_excel</span>(<span class="kw">readxl_example</span>(<span class="st">"deaths.xlsx"</span>), <span class="dt">range =</span> <span class="st">"arts!A5:F15"</span>)</a> <a class="sourceLine" id="cb8-2" data-line-number="2"><span class="co">#> # A tibble: 10 x 6</span></a> <a class="sourceLine" id="cb8-3" data-line-number="3"><span class="co">#> Name Profession Age `Has kids` `Date of birth` `Date of death` </span></a> <a class="sourceLine" id="cb8-4" data-line-number="4"><span class="co">#> <chr> <chr> <dbl> <lgl> <dttm> <dttm> </span></a> <a class="sourceLine" id="cb8-5" data-line-number="5"><span class="co">#> 1 Davi… musician 69 TRUE 1947-01-08 00:00:00 2016-01-10 00:00:00</span></a> <a class="sourceLine" id="cb8-6" data-line-number="6"><span class="co">#> 2 Carr… actor 60 TRUE 1956-10-21 00:00:00 2016-12-27 00:00:00</span></a> <a class="sourceLine" id="cb8-7" data-line-number="7"><span class="co">#> 3 Chuc… musician 90 TRUE 1926-10-18 00:00:00 2017-03-18 00:00:00</span></a> <a class="sourceLine" id="cb8-8" data-line-number="8"><span class="co">#> 4 Bill… actor 61 TRUE 1955-05-17 00:00:00 2017-02-25 00:00:00</span></a> <a class="sourceLine" id="cb8-9" data-line-number="9"><span class="co">#> # … with 6 more rows</span></a></code></pre></div> <p>We repeat the screenshot of <code>geometry.xlsx</code> as a visual reference.</p> <p><img src="" width="70%" /></p> <p>Going back to <code>geometry.xlsx</code>, here we specify a rectangle that only partially overlaps the data. Note the use of default column names, because the first row of cells is empty, and the leading column of <code>NA</code>s.</p> <div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb9-1" data-line-number="1"><span class="kw">read_excel</span>(<span class="kw">readxl_example</span>(<span class="st">"geometry.xlsx"</span>), <span class="dt">range =</span> <span class="st">"A2:C4"</span>)</a> <a class="sourceLine" id="cb9-2" data-line-number="2"><span class="co">#> New names:</span></a> <a class="sourceLine" id="cb9-3" data-line-number="3"><span class="co">#> * `` -> ...1</span></a> <a class="sourceLine" id="cb9-4" data-line-number="4"><span class="co">#> * `` -> ...2</span></a> <a class="sourceLine" id="cb9-5" data-line-number="5"><span class="co">#> * `` -> ...3</span></a> <a class="sourceLine" id="cb9-6" data-line-number="6"><span class="co">#> # A tibble: 2 x 3</span></a> <a class="sourceLine" id="cb9-7" data-line-number="7"><span class="co">#> ...1 ...2 ...3 </span></a> <a class="sourceLine" id="cb9-8" data-line-number="8"><span class="co">#> <lgl> <chr> <chr></span></a> <a class="sourceLine" id="cb9-9" data-line-number="9"><span class="co">#> 1 NA B3 C3 </span></a> <a class="sourceLine" id="cb9-10" data-line-number="10"><span class="co">#> 2 NA B4 C4</span></a></code></pre></div> <p><strong>Specific range of rows or columns</strong>: Set exact limits on just the rows or just the columns and allow the limits in the other direction to be discovered. Example calls:</p> <div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb10-1" data-line-number="1"><span class="co">## rows only</span></a> <a class="sourceLine" id="cb10-2" data-line-number="2"><span class="kw">read_excel</span>(..., <span class="dt">range =</span> <span class="kw">cell_rows</span>(<span class="dv">1</span><span class="op">:</span><span class="dv">10</span>))</a> <a class="sourceLine" id="cb10-3" data-line-number="3"><span class="co">## is equivalent to</span></a> <a class="sourceLine" id="cb10-4" data-line-number="4"><span class="kw">read_excel</span>(..., <span class="dt">range =</span> <span class="kw">cell_rows</span>(<span class="kw">c</span>(<span class="dv">1</span>, <span class="dv">10</span>)))</a> <a class="sourceLine" id="cb10-5" data-line-number="5"></a> <a class="sourceLine" id="cb10-6" data-line-number="6"><span class="co">## columns only</span></a> <a class="sourceLine" id="cb10-7" data-line-number="7"><span class="kw">read_excel</span>(..., <span class="dt">range =</span> <span class="kw">cell_cols</span>(<span class="dv">1</span><span class="op">:</span><span class="dv">26</span>))</a> <a class="sourceLine" id="cb10-8" data-line-number="8"><span class="co">## is equivalent to all of these</span></a> <a class="sourceLine" id="cb10-9" data-line-number="9"><span class="kw">read_excel</span>(..., <span class="dt">range =</span> <span class="kw">cell_cols</span>(<span class="kw">c</span>(<span class="dv">1</span>, <span class="dv">26</span>)))</a> <a class="sourceLine" id="cb10-10" data-line-number="10"><span class="kw">read_excel</span>(..., <span class="dt">range =</span> <span class="kw">cell_cols</span>(<span class="st">"A:Z"</span>))</a> <a class="sourceLine" id="cb10-11" data-line-number="11"><span class="kw">read_excel</span>(..., <span class="dt">range =</span> <span class="kw">cell_cols</span>(LETTERS))</a> <a class="sourceLine" id="cb10-12" data-line-number="12"><span class="kw">read_excel</span>(..., <span class="dt">range =</span> <span class="kw">cell_cols</span>(<span class="kw">c</span>(<span class="st">"A"</span>, <span class="st">"Z"</span>))</a></code></pre></div> <p>We use <code>geometry.xlsx</code> to demonstrate setting hard limits on the rows, running past the data, while allowing column limits to discovered. Note the trailing rows of <code>NA</code>.</p> <div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb11-1" data-line-number="1"><span class="kw">read_excel</span>(<span class="kw">readxl_example</span>(<span class="st">"geometry.xlsx"</span>), <span class="dt">range =</span> <span class="kw">cell_rows</span>(<span class="dv">4</span><span class="op">:</span><span class="dv">8</span>))</a> <a class="sourceLine" id="cb11-2" data-line-number="2"><span class="co">#> # A tibble: 4 x 3</span></a> <a class="sourceLine" id="cb11-3" data-line-number="3"><span class="co">#> B4 C4 D4 </span></a> <a class="sourceLine" id="cb11-4" data-line-number="4"><span class="co">#> <chr> <chr> <chr></span></a> <a class="sourceLine" id="cb11-5" data-line-number="5"><span class="co">#> 1 B5 C5 D5 </span></a> <a class="sourceLine" id="cb11-6" data-line-number="6"><span class="co">#> 2 B6 C6 D6 </span></a> <a class="sourceLine" id="cb11-7" data-line-number="7"><span class="co">#> 3 <NA> <NA> <NA> </span></a> <a class="sourceLine" id="cb11-8" data-line-number="8"><span class="co">#> 4 <NA> <NA> <NA></span></a></code></pre></div> <p><strong>Anchored rectangle</strong>: Helper functions <code>anchored()</code> and <code>cell_limits()</code> let you specify limits via the corner(s) of the rectangle.</p> <p>Here we get a 3 by 4 rectangle with cell C5 as the upper left corner:</p> <div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb12-1" data-line-number="1"><span class="kw">read_excel</span>(</a> <a class="sourceLine" id="cb12-2" data-line-number="2"> <span class="kw">readxl_example</span>(<span class="st">"geometry.xlsx"</span>),</a> <a class="sourceLine" id="cb12-3" data-line-number="3"> <span class="dt">col_names =</span> <span class="kw">paste</span>(<span class="st">"var"</span>, <span class="dv">1</span><span class="op">:</span><span class="dv">4</span>, <span class="dt">sep =</span> <span class="st">"_"</span>),</a> <a class="sourceLine" id="cb12-4" data-line-number="4"> <span class="dt">range =</span> <span class="kw">anchored</span>(<span class="st">"C5"</span>, <span class="kw">c</span>(<span class="dv">3</span>, <span class="dv">4</span>))</a> <a class="sourceLine" id="cb12-5" data-line-number="5">)</a> <a class="sourceLine" id="cb12-6" data-line-number="6"><span class="co">#> # A tibble: 3 x 4</span></a> <a class="sourceLine" id="cb12-7" data-line-number="7"><span class="co">#> var_1 var_2 var_3 var_4</span></a> <a class="sourceLine" id="cb12-8" data-line-number="8"><span class="co">#> <chr> <chr> <lgl> <lgl></span></a> <a class="sourceLine" id="cb12-9" data-line-number="9"><span class="co">#> 1 C5 D5 NA NA </span></a> <a class="sourceLine" id="cb12-10" data-line-number="10"><span class="co">#> 2 C6 D6 NA NA </span></a> <a class="sourceLine" id="cb12-11" data-line-number="11"><span class="co">#> 3 <NA> <NA> NA NA</span></a></code></pre></div> <p>Here we set C5 as the upper left corner and allow the other limits to be discovered:</p> <div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb13-1" data-line-number="1"><span class="kw">read_excel</span>(</a> <a class="sourceLine" id="cb13-2" data-line-number="2"> <span class="kw">readxl_example</span>(<span class="st">"geometry.xlsx"</span>),</a> <a class="sourceLine" id="cb13-3" data-line-number="3"> <span class="dt">col_names =</span> <span class="ot">FALSE</span>,</a> <a class="sourceLine" id="cb13-4" data-line-number="4"> <span class="dt">range =</span> <span class="kw">cell_limits</span>(<span class="kw">c</span>(<span class="dv">5</span>, <span class="dv">3</span>), <span class="kw">c</span>(<span class="ot">NA</span>, <span class="ot">NA</span>))</a> <a class="sourceLine" id="cb13-5" data-line-number="5">)</a> <a class="sourceLine" id="cb13-6" data-line-number="6"><span class="co">#> New names:</span></a> <a class="sourceLine" id="cb13-7" data-line-number="7"><span class="co">#> * `` -> ...1</span></a> <a class="sourceLine" id="cb13-8" data-line-number="8"><span class="co">#> * `` -> ...2</span></a> <a class="sourceLine" id="cb13-9" data-line-number="9"><span class="co">#> # A tibble: 2 x 2</span></a> <a class="sourceLine" id="cb13-10" data-line-number="10"><span class="co">#> ...1 ...2 </span></a> <a class="sourceLine" id="cb13-11" data-line-number="11"><span class="co">#> <chr> <chr></span></a> <a class="sourceLine" id="cb13-12" data-line-number="12"><span class="co">#> 1 C5 D5 </span></a> <a class="sourceLine" id="cb13-13" data-line-number="13"><span class="co">#> 2 C6 D6</span></a></code></pre></div> </div> <!-- dynamically load mathjax for compatibility with self-contained --> <script> (function () { var script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; document.getElementsByTagName("head")[0].appendChild(script); })(); </script> </body> </html>