EVOLUTION-MANAGER
Edit File: isoband1.html
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="generator" content="pandoc" /> <meta http-equiv="X-UA-Compatible" content="IE=EDGE" /> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="author" content="Claus O. Wilke" /> <meta name="date" content="2020-06-20" /> <title>1. Generating isolines and isobands</title> <style type="text/css">code{white-space: pre;}</style> <style type="text/css" data-origin="pandoc"> a.sourceLine { display: inline-block; line-height: 1.25; } a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; } a.sourceLine:empty { height: 1.2em; } .sourceCode { overflow: visible; } code.sourceCode { white-space: pre; position: relative; } div.sourceCode { margin: 1em 0; } pre.sourceCode { margin: 0; } @media screen { div.sourceCode { overflow: auto; } } @media print { code.sourceCode { white-space: pre-wrap; } a.sourceLine { text-indent: -1em; padding-left: 1em; } } pre.numberSource a.sourceLine { position: relative; left: -4em; } pre.numberSource a.sourceLine::before { content: attr(data-line-number); position: relative; left: -1em; text-align: right; vertical-align: baseline; border: none; pointer-events: all; display: inline-block; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; padding: 0 4px; width: 4em; color: #aaaaaa; } pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; } div.sourceCode { } @media screen { a.sourceLine::before { text-decoration: underline; } } code span.al { color: #ff0000; font-weight: bold; } /* Alert */ code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */ code span.at { color: #7d9029; } /* Attribute */ code span.bn { color: #40a070; } /* BaseN */ code span.bu { } /* BuiltIn */ code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */ code span.ch { color: #4070a0; } /* Char */ code span.cn { color: #880000; } /* Constant */ code span.co { color: #60a0b0; font-style: italic; } /* Comment */ code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */ code span.do { color: #ba2121; font-style: italic; } /* Documentation */ code span.dt { color: #902000; } /* DataType */ code span.dv { color: #40a070; } /* DecVal */ code span.er { color: #ff0000; font-weight: bold; } /* Error */ code span.ex { } /* Extension */ code span.fl { color: #40a070; } /* Float */ code span.fu { color: #06287e; } /* Function */ code span.im { } /* Import */ code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */ code span.kw { color: #007020; font-weight: bold; } /* Keyword */ code span.op { color: #666666; } /* Operator */ code span.ot { color: #007020; } /* Other */ code span.pp { color: #bc7a00; } /* Preprocessor */ code span.sc { color: #4070a0; } /* SpecialChar */ code span.ss { color: #bb6688; } /* SpecialString */ code span.st { color: #4070a0; } /* String */ code span.va { color: #19177c; } /* Variable */ code span.vs { color: #4070a0; } /* VerbatimString */ code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */ </style> <script> // apply pandoc div.sourceCode style to pre.sourceCode instead (function() { var sheets = document.styleSheets; for (var i = 0; i < sheets.length; i++) { if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue; try { var rules = sheets[i].cssRules; } catch (e) { continue; } for (var j = 0; j < rules.length; j++) { var rule = rules[j]; // check if there is a div.sourceCode rule if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") continue; var style = rule.style.cssText; // check if color or background-color is set if (rule.style.color === '' && rule.style.backgroundColor === '') continue; // replace div.sourceCode by a pre.sourceCode rule sheets[i].deleteRule(j); sheets[i].insertRule('pre.sourceCode{' + style + '}', j); } } })(); </script> <style type="text/css">body { background-color: #fff; margin: 1em auto; max-width: 700px; overflow: visible; padding-left: 2em; padding-right: 2em; font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 14px; line-height: 1.35; } #header { text-align: center; } #TOC { clear: both; margin: 0 0 10px 10px; padding: 4px; width: 400px; border: 1px solid #CCCCCC; border-radius: 5px; background-color: #f6f6f6; font-size: 13px; line-height: 1.3; } #TOC .toctitle { font-weight: bold; font-size: 15px; margin-left: 5px; } #TOC ul { padding-left: 40px; margin-left: -1.5em; margin-top: 5px; margin-bottom: 5px; } #TOC ul ul { margin-left: -2em; } #TOC li { line-height: 16px; } table { margin: 1em auto; border-width: 1px; border-color: #DDDDDD; border-style: outset; border-collapse: collapse; } table th { border-width: 2px; padding: 5px; border-style: inset; } table td { border-width: 1px; border-style: inset; line-height: 18px; padding: 5px 5px; } table, table th, table td { border-left-style: none; border-right-style: none; } table thead, table tr.even { background-color: #f7f7f7; } p { margin: 0.5em 0; } blockquote { background-color: #f6f6f6; padding: 0.25em 0.75em; } hr { border-style: solid; border: none; border-top: 1px solid #777; margin: 28px 0; } dl { margin-left: 0; } dl dd { margin-bottom: 13px; margin-left: 13px; } dl dt { font-weight: bold; } ul { margin-top: 0; } ul li { list-style: circle outside; } ul ul { margin-bottom: 0; } pre, code { background-color: #f7f7f7; border-radius: 3px; color: #333; white-space: pre-wrap; } pre { border-radius: 3px; margin: 5px 0px 10px 0px; padding: 10px; } pre:not([class]) { background-color: #f7f7f7; } code { font-family: Consolas, Monaco, 'Courier New', monospace; font-size: 85%; } p > code, li > code { padding: 2px 0px; } div.figure { text-align: center; } img { background-color: #FFFFFF; padding: 2px; border: 1px solid #DDDDDD; border-radius: 3px; border: 1px solid #CCCCCC; margin: 0 5px; } h1 { margin-top: 0; font-size: 35px; line-height: 40px; } h2 { border-bottom: 4px solid #f7f7f7; padding-top: 10px; padding-bottom: 2px; font-size: 145%; } h3 { border-bottom: 2px solid #f7f7f7; padding-top: 10px; font-size: 120%; } h4 { border-bottom: 1px solid #f7f7f7; margin-left: 8px; font-size: 105%; } h5, h6 { border-bottom: 1px solid #ccc; font-size: 105%; } a { color: #0033dd; text-decoration: none; } a:hover { color: #6666ff; } a:visited { color: #800080; } a:visited:hover { color: #BB00BB; } a[href^="http:"] { text-decoration: underline; } a[href^="https:"] { text-decoration: underline; } code > span.kw { color: #555; font-weight: bold; } code > span.dt { color: #902000; } code > span.dv { color: #40a070; } code > span.bn { color: #d14; } code > span.fl { color: #d14; } code > span.ch { color: #d14; } code > span.st { color: #d14; } code > span.co { color: #888888; font-style: italic; } code > span.ot { color: #007020; } code > span.al { color: #ff0000; font-weight: bold; } code > span.fu { color: #900; font-weight: bold; } code > span.er { color: #a61717; background-color: #e3d2d2; } </style> </head> <body> <h1 class="title toc-ignore">1. Generating isolines and isobands</h1> <h4 class="author">Claus O. Wilke</h4> <h4 class="date">2020-06-20</h4> <p>The isoband package implements fast algorithms for generating isolines (lines of equal elevation) and isobands (ranges of elevation delimited by two isolines) from a matrix of elevation data. For both cases, the package employs the marching squares algorithms as described on <a href="https://en.wikipedia.org/wiki/Marching_squares">Wikipedia.</a> Marching squares algorithms break down the elevation matrix into blocks of 2x2 elevation values. For each block, they then determine the appropriate isolines/isobands from a lookup table of all possible arrangements of isolines or isobands within a 2x2 block. There are 16 distinct possibilities for isolines and 81 for isobands. The implementation in the isoband package goes beyond the algorithm described on Wikipedia in that it merges the isolines or isobands from separate blocks into extended line traces or polygons. The package is meant as a low-level package with minimal required dependencies. Therefore, many of the functions provided may not immediately be useful to endusers, but they will enable developers of other packages to integrate isolines and isobands into their feature set.</p> <p>The two main functions of the package are called <code>isolines()</code> and <code>isobands()</code>, and they have similar user interfaces and return values. Both take a vector <code>x</code> specifying the x values corresponding to the columns of the elevation matrix, a vector <code>y</code> specifying the y values corresponding to the rows of the elevation matrix, and an elevation matrix <code>z</code>. The two functions differ in that <code>isolines()</code> takes a single argument <code>levels</code> specifying the elevation levels for which isolines should be calculated, whereas <code>isobands()</code> takes two arguments, <code>levels_low</code> and <code>levels_high</code>, specifying the lower and upper bounds for each isoband. The return value in both cases is a list of lists. The outer list contains one list element for each specified isolevel. The inner lists hold line or polygon data in the form <code>x</code>, <code>y</code>, <code>id</code> as used by <code>grid::polylineGrob()</code> or <code>grid::pathGrob()</code>. The format has been chosen for easy drawing of the resulting values via these two grid functions.</p> <div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" data-line-number="1"><span class="kw">library</span>(isoband)</a> <a class="sourceLine" id="cb1-2" data-line-number="2"><span class="kw">library</span>(grid)</a> <a class="sourceLine" id="cb1-3" data-line-number="3"></a> <a class="sourceLine" id="cb1-4" data-line-number="4">m <-<span class="st"> </span><span class="kw">matrix</span>(</a> <a class="sourceLine" id="cb1-5" data-line-number="5"> <span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>,</a> <a class="sourceLine" id="cb1-6" data-line-number="6"> <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>,</a> <a class="sourceLine" id="cb1-7" data-line-number="7"> <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">0</span>, <span class="dv">0</span>,</a> <a class="sourceLine" id="cb1-8" data-line-number="8"> <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">0</span>,</a> <a class="sourceLine" id="cb1-9" data-line-number="9"> <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>),</a> <a class="sourceLine" id="cb1-10" data-line-number="10"> <span class="dv">5</span>, <span class="dv">5</span>, <span class="dt">byrow =</span> <span class="ot">TRUE</span></a> <a class="sourceLine" id="cb1-11" data-line-number="11">)</a> <a class="sourceLine" id="cb1-12" data-line-number="12"></a> <a class="sourceLine" id="cb1-13" data-line-number="13">lines <-<span class="st"> </span><span class="kw">isolines</span>(<span class="dt">x =</span> <span class="dv">1</span><span class="op">:</span><span class="kw">ncol</span>(m)<span class="op">/</span><span class="dv">6</span>, <span class="dt">y =</span> <span class="kw">nrow</span>(m)<span class="op">:</span><span class="dv">1</span><span class="op">/</span><span class="dv">6</span>, <span class="dt">z =</span> m, <span class="dt">levels =</span> <span class="fl">0.5</span>)</a> <a class="sourceLine" id="cb1-14" data-line-number="14">lines</a> <a class="sourceLine" id="cb1-15" data-line-number="15"><span class="co">#> $`0.5`</span></a> <a class="sourceLine" id="cb1-16" data-line-number="16"><span class="co">#> $`0.5`$x</span></a> <a class="sourceLine" id="cb1-17" data-line-number="17"><span class="co">#> [1] 0.6666667 0.5833333 0.5000000 0.4166667 0.3333333 0.2500000 0.2500000</span></a> <a class="sourceLine" id="cb1-18" data-line-number="18"><span class="co">#> [8] 0.2500000 0.3333333 0.5000000 0.6666667 0.7500000 0.6666667 0.6250000</span></a> <a class="sourceLine" id="cb1-19" data-line-number="19"><span class="co">#> [15] 0.6666667 0.7500000 0.6666667</span></a> <a class="sourceLine" id="cb1-20" data-line-number="20"><span class="co">#> </span></a> <a class="sourceLine" id="cb1-21" data-line-number="21"><span class="co">#> $`0.5`$y</span></a> <a class="sourceLine" id="cb1-22" data-line-number="22"><span class="co">#> [1] 0.2500000 0.3333333 0.3750000 0.3333333 0.2500000 0.3333333 0.5000000</span></a> <a class="sourceLine" id="cb1-23" data-line-number="23"><span class="co">#> [8] 0.6666667 0.7500000 0.7916667 0.7500000 0.6666667 0.5833333 0.5000000</span></a> <a class="sourceLine" id="cb1-24" data-line-number="24"><span class="co">#> [15] 0.4166667 0.3333333 0.2500000</span></a> <a class="sourceLine" id="cb1-25" data-line-number="25"><span class="co">#> </span></a> <a class="sourceLine" id="cb1-26" data-line-number="26"><span class="co">#> $`0.5`$id</span></a> <a class="sourceLine" id="cb1-27" data-line-number="27"><span class="co">#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</span></a> <a class="sourceLine" id="cb1-28" data-line-number="28"><span class="co">#> </span></a> <a class="sourceLine" id="cb1-29" data-line-number="29"><span class="co">#> </span></a> <a class="sourceLine" id="cb1-30" data-line-number="30"><span class="co">#> attr(,"class")</span></a> <a class="sourceLine" id="cb1-31" data-line-number="31"><span class="co">#> [1] "isolines" "iso"</span></a> <a class="sourceLine" id="cb1-32" data-line-number="32"><span class="kw">grid.newpage</span>()</a> <a class="sourceLine" id="cb1-33" data-line-number="33"><span class="kw">grid.draw</span>(<span class="kw">polylineGrob</span>(lines[[<span class="dv">1</span>]]<span class="op">$</span>x, lines[[<span class="dv">1</span>]]<span class="op">$</span>y, lines[[<span class="dv">1</span>]]<span class="op">$</span>id))</a></code></pre></div> <p><img src="" /><!-- --></p> <div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb2-1" data-line-number="1"></a> <a class="sourceLine" id="cb2-2" data-line-number="2">bands <-<span class="st"> </span><span class="kw">isobands</span>(<span class="dt">x =</span> <span class="dv">1</span><span class="op">:</span><span class="kw">ncol</span>(m)<span class="op">/</span><span class="dv">6</span>, <span class="dt">y =</span> <span class="kw">nrow</span>(m)<span class="op">:</span><span class="dv">1</span><span class="op">/</span><span class="dv">6</span>, <span class="dt">z =</span> m, <span class="dt">levels_low =</span> <span class="fl">0.5</span>, <span class="dt">levels_high =</span> <span class="fl">1.5</span>)</a> <a class="sourceLine" id="cb2-3" data-line-number="3">bands</a> <a class="sourceLine" id="cb2-4" data-line-number="4"><span class="co">#> $`0.5:1.5`</span></a> <a class="sourceLine" id="cb2-5" data-line-number="5"><span class="co">#> $`0.5:1.5`$x</span></a> <a class="sourceLine" id="cb2-6" data-line-number="6"><span class="co">#> [1] 0.4166667 0.3333333 0.2500000 0.2500000 0.2500000 0.3333333 0.5000000</span></a> <a class="sourceLine" id="cb2-7" data-line-number="7"><span class="co">#> [8] 0.6666667 0.7500000 0.6666667 0.6250000 0.6666667 0.7500000 0.6666667</span></a> <a class="sourceLine" id="cb2-8" data-line-number="8"><span class="co">#> [15] 0.5833333 0.5000000 0.5000000 0.5416667 0.5833333 0.5000000 0.4166667</span></a> <a class="sourceLine" id="cb2-9" data-line-number="9"><span class="co">#> [22] 0.4166667</span></a> <a class="sourceLine" id="cb2-10" data-line-number="10"><span class="co">#> </span></a> <a class="sourceLine" id="cb2-11" data-line-number="11"><span class="co">#> $`0.5:1.5`$y</span></a> <a class="sourceLine" id="cb2-12" data-line-number="12"><span class="co">#> [1] 0.3333333 0.2500000 0.3333333 0.5000000 0.6666667 0.7500000 0.7916667</span></a> <a class="sourceLine" id="cb2-13" data-line-number="13"><span class="co">#> [8] 0.7500000 0.6666667 0.5833333 0.5000000 0.4166667 0.3333333 0.2500000</span></a> <a class="sourceLine" id="cb2-14" data-line-number="14"><span class="co">#> [15] 0.3333333 0.3750000 0.4583333 0.5000000 0.6666667 0.7083333 0.6666667</span></a> <a class="sourceLine" id="cb2-15" data-line-number="15"><span class="co">#> [22] 0.5000000</span></a> <a class="sourceLine" id="cb2-16" data-line-number="16"><span class="co">#> </span></a> <a class="sourceLine" id="cb2-17" data-line-number="17"><span class="co">#> $`0.5:1.5`$id</span></a> <a class="sourceLine" id="cb2-18" data-line-number="18"><span class="co">#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2</span></a> <a class="sourceLine" id="cb2-19" data-line-number="19"><span class="co">#> </span></a> <a class="sourceLine" id="cb2-20" data-line-number="20"><span class="co">#> </span></a> <a class="sourceLine" id="cb2-21" data-line-number="21"><span class="co">#> attr(,"class")</span></a> <a class="sourceLine" id="cb2-22" data-line-number="22"><span class="co">#> [1] "isobands" "iso"</span></a> <a class="sourceLine" id="cb2-23" data-line-number="23"><span class="kw">grid.newpage</span>()</a> <a class="sourceLine" id="cb2-24" data-line-number="24"><span class="kw">grid.draw</span>(<span class="kw">pathGrob</span>(bands[[<span class="dv">1</span>]]<span class="op">$</span>x, bands[[<span class="dv">1</span>]]<span class="op">$</span>y, bands[[<span class="dv">1</span>]]<span class="op">$</span>id, <span class="dt">gp =</span> <span class="kw">gpar</span>(<span class="dt">fill =</span> <span class="st">"cornsilk"</span>)))</a></code></pre></div> <p><img src="" /><!-- --></p> <p>A convenience function <code>plot_iso()</code> can be used to inspect a single isoband and corresponding isolines for an elevation matrix. This function is mostly meant for debugging and illustration purposes. It draws a grid of matrix points colored by whether each point is below, within, or above the isoband, as well as the isoband itself and the enclosing isolines.</p> <div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb3-1" data-line-number="1"><span class="kw">plot_iso</span>(m, <span class="fl">0.5</span>, <span class="fl">1.5</span>)</a></code></pre></div> <p><img src="" /><!-- --></p> <p>The isoband package handles <code>NA</code> values in the matrix by simply ignoring the respective grid points.</p> <div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb4-1" data-line-number="1">m <-<span class="st"> </span><span class="kw">matrix</span>(</a> <a class="sourceLine" id="cb4-2" data-line-number="2"> <span class="kw">c</span>(<span class="ot">NA</span>, <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>,</a> <a class="sourceLine" id="cb4-3" data-line-number="3"> <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">0</span>,</a> <a class="sourceLine" id="cb4-4" data-line-number="4"> <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">0</span>,</a> <a class="sourceLine" id="cb4-5" data-line-number="5"> <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>,</a> <a class="sourceLine" id="cb4-6" data-line-number="6"> <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">0</span>, <span class="dv">0</span>,</a> <a class="sourceLine" id="cb4-7" data-line-number="7"> <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>),</a> <a class="sourceLine" id="cb4-8" data-line-number="8"> <span class="dv">6</span>, <span class="dv">6</span>, <span class="dt">byrow =</span> <span class="ot">TRUE</span></a> <a class="sourceLine" id="cb4-9" data-line-number="9">)</a> <a class="sourceLine" id="cb4-10" data-line-number="10"><span class="kw">plot_iso</span>(m, <span class="fl">0.5</span>, <span class="fl">1.5</span>)</a></code></pre></div> <p><img src="" /><!-- --></p> <p>Isobands can contain holes, as shown above, and they can also consist of multiple disconnected pieces.</p> <div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb5-1" data-line-number="1">m <-<span class="st"> </span><span class="kw">matrix</span>(</a> <a class="sourceLine" id="cb5-2" data-line-number="2"> <span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>,</a> <a class="sourceLine" id="cb5-3" data-line-number="3"> <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>,</a> <a class="sourceLine" id="cb5-4" data-line-number="4"> <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">0</span>, <span class="dv">0</span>,</a> <a class="sourceLine" id="cb5-5" data-line-number="5"> <span class="dv">0</span>, <span class="dv">0</span>, <span class="fl">0.8</span>, <span class="dv">0</span>),</a> <a class="sourceLine" id="cb5-6" data-line-number="6"> <span class="dv">4</span>, <span class="dv">4</span>, <span class="dt">byrow =</span> <span class="ot">TRUE</span></a> <a class="sourceLine" id="cb5-7" data-line-number="7">)</a> <a class="sourceLine" id="cb5-8" data-line-number="8"><span class="kw">plot_iso</span>(m, <span class="fl">0.5</span>, <span class="fl">1.5</span>)</a></code></pre></div> <p><img src="" /><!-- --></p> <div id="performance" class="section level1"> <h1>Performance</h1> <p>The code is written in C++ and performance is generally good. Isolining is about as fast as <code>grDevices::contourLines()</code>, isobanding is approximately 2.5 times slower.</p> <div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb6-1" data-line-number="1"><span class="co"># contouring with contourLines() from grDevices</span></a> <a class="sourceLine" id="cb6-2" data-line-number="2">fn_contourLines <-<span class="st"> </span><span class="cf">function</span>() {</a> <a class="sourceLine" id="cb6-3" data-line-number="3"> grDevices<span class="op">::</span><span class="kw">contourLines</span>(<span class="dv">1</span><span class="op">:</span><span class="kw">ncol</span>(volcano), <span class="dv">1</span><span class="op">:</span><span class="kw">nrow</span>(volcano), volcano, <span class="dt">levels =</span> <span class="dv">10</span><span class="op">*</span>(<span class="dv">10</span><span class="op">:</span><span class="dv">18</span>))</a> <a class="sourceLine" id="cb6-4" data-line-number="4">}</a> <a class="sourceLine" id="cb6-5" data-line-number="5"></a> <a class="sourceLine" id="cb6-6" data-line-number="6"><span class="co"># contouring with isolines()</span></a> <a class="sourceLine" id="cb6-7" data-line-number="7">fn_isolines <-<span class="st"> </span><span class="cf">function</span>() {</a> <a class="sourceLine" id="cb6-8" data-line-number="8"> <span class="kw">isolines</span>(<span class="dv">1</span><span class="op">:</span><span class="kw">ncol</span>(volcano), <span class="dv">1</span><span class="op">:</span><span class="kw">nrow</span>(volcano), volcano, <span class="dv">10</span><span class="op">*</span>(<span class="dv">10</span><span class="op">:</span><span class="dv">18</span>))</a> <a class="sourceLine" id="cb6-9" data-line-number="9">}</a> <a class="sourceLine" id="cb6-10" data-line-number="10"></a> <a class="sourceLine" id="cb6-11" data-line-number="11"><span class="co"># contouring with isobands()</span></a> <a class="sourceLine" id="cb6-12" data-line-number="12">fn_isobands <-<span class="st"> </span><span class="cf">function</span>() {</a> <a class="sourceLine" id="cb6-13" data-line-number="13"> <span class="kw">isobands</span>(<span class="dv">1</span><span class="op">:</span><span class="kw">ncol</span>(volcano), <span class="dv">1</span><span class="op">:</span><span class="kw">nrow</span>(volcano), volcano, <span class="dv">10</span><span class="op">*</span>(<span class="dv">9</span><span class="op">:</span><span class="dv">17</span>), <span class="dv">10</span><span class="op">*</span>(<span class="dv">10</span><span class="op">:</span><span class="dv">18</span>))</a> <a class="sourceLine" id="cb6-14" data-line-number="14">}</a> <a class="sourceLine" id="cb6-15" data-line-number="15"></a> <a class="sourceLine" id="cb6-16" data-line-number="16">microbenchmark<span class="op">::</span><span class="kw">microbenchmark</span>(<span class="kw">fn_contourLines</span>(), <span class="kw">fn_isolines</span>(), <span class="kw">fn_isobands</span>())</a> <a class="sourceLine" id="cb6-17" data-line-number="17"><span class="co">#> Unit: milliseconds</span></a> <a class="sourceLine" id="cb6-18" data-line-number="18"><span class="co">#> expr min lq mean median uq max neval</span></a> <a class="sourceLine" id="cb6-19" data-line-number="19"><span class="co">#> fn_contourLines() 1.442513 1.681290 2.169689 1.894114 2.331955 9.303196 100</span></a> <a class="sourceLine" id="cb6-20" data-line-number="20"><span class="co">#> fn_isolines() 1.289770 1.338746 1.565012 1.389391 1.484036 9.083693 100</span></a> <a class="sourceLine" id="cb6-21" data-line-number="21"><span class="co">#> fn_isobands() 3.503164 3.625954 3.824731 3.730151 3.891408 6.310581 100</span></a> <a class="sourceLine" id="cb6-22" data-line-number="22"><span class="co">#> cld</span></a> <a class="sourceLine" id="cb6-23" data-line-number="23"><span class="co">#> b </span></a> <a class="sourceLine" id="cb6-24" data-line-number="24"><span class="co">#> a </span></a> <a class="sourceLine" id="cb6-25" data-line-number="25"><span class="co">#> c</span></a></code></pre></div> </div> <!-- code folding --> <!-- dynamically load mathjax for compatibility with self-contained --> <script> (function () { var script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; document.getElementsByTagName("head")[0].appendChild(script); })(); </script> </body> </html>