EVOLUTION-MANAGER
Edit File: is_graphical.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><title>R: Is a degree sequence graphical?</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="R.css" /> </head><body> <table width="100%" summary="page for is_graphical {igraph}"><tr><td>is_graphical {igraph}</td><td style="text-align: right;">R Documentation</td></tr></table> <h2>Is a degree sequence graphical?</h2> <h3>Description</h3> <p>Determine whether the given vertex degrees (in- and out-degrees for directed graphs) can be realized in a graph. </p> <h3>Usage</h3> <pre> is_graphical( out.deg, in.deg = NULL, allowed.edge.types = c("simple", "loops", "multi", "all") ) </pre> <h3>Arguments</h3> <table summary="R argblock"> <tr valign="top"><td><code>out.deg</code></td> <td> <p>Integer vector, the degree sequence for undirected graphs, or the out-degree sequence for directed graphs.</p> </td></tr> <tr valign="top"><td><code>in.deg</code></td> <td> <p><code>NULL</code> or an integer vector. For undirected graphs, it should be <code>NULL</code>. For directed graphs it specifies the in-degrees.</p> </td></tr> <tr valign="top"><td><code>allowed.edge.types</code></td> <td> <p>The allowed edge types in the graph. ‘simple’ means that neither loop nor multiple edges are allowed (i.e. the graph must be simple). ‘loops’ means that loop edges are allowed but mutiple edges are not. ‘multi’ means that multiple edges are allowed but loop edges are not. ‘all’ means that both loop edges and multiple edges are allowed.</p> </td></tr> </table> <h3>Details</h3> <p>The classical concept of graphicality assumes simple graphs. This function can perform the check also when self-loops, multi-edges, or both are allowed in the graph. </p> <h3>Value</h3> <p>A logical scalar. </p> <h3>Author(s)</h3> <p>Tamas Nepusz <a href="mailto:ntamas@gmail.com">ntamas@gmail.com</a> </p> <h3>References</h3> <p>Hakimi SL: On the realizability of a set of integers as degrees of the vertices of a simple graph. <em>J SIAM Appl Math</em> 10:496-506, 1962. </p> <p>PL Erdos, I Miklos and Z Toroczkai: A simple Havel-Hakimi type algorithm to realize graphical degree sequences of directed graphs. <em>The Electronic Journal of Combinatorics</em> 17(1):R66, 2010. </p> <h3>See Also</h3> <p>Other graphical degree sequences: <code><a href="is_degseq.html">is_degseq</a>()</code> </p> <h3>Examples</h3> <pre> g <- sample_gnp(100, 2/100) is_degseq(degree(g)) is_graphical(degree(g)) </pre> <hr /><div style="text-align: center;">[Package <em>igraph</em> version 1.3.5 <a href="00Index.html">Index</a>]</div> </body></html>