EVOLUTION-MANAGER
Edit File: is_degseq.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><title>R: Check if a degree sequence is valid for a multi-graph</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="R.css" /> </head><body> <table width="100%" summary="page for is_degseq {igraph}"><tr><td>is_degseq {igraph}</td><td style="text-align: right;">R Documentation</td></tr></table> <h2>Check if a degree sequence is valid for a multi-graph</h2> <h3>Description</h3> <p><code>is_degseq</code> checks whether the given vertex degrees (in- and out-degrees for directed graphs) can be realized by a graph. Note that the graph does not have to be simple, it may contain loop and multiple edges. For undirected graphs, it also checks whether the sum of degrees is even. For directed graphs, the function checks whether the lengths of the two degree vectors are equal and whether their sums are also equal. These are known sufficient and necessary conditions for a degree sequence to be valid. </p> <h3>Usage</h3> <pre> is_degseq(out.deg, in.deg = NULL) </pre> <h3>Arguments</h3> <table summary="R argblock"> <tr valign="top"><td><code>out.deg</code></td> <td> <p>Integer vector, the degree sequence for undirected graphs, or the out-degree sequence for directed graphs.</p> </td></tr> <tr valign="top"><td><code>in.deg</code></td> <td> <p><code>NULL</code> or an integer vector. For undirected graphs, it should be <code>NULL</code>. For directed graphs it specifies the in-degrees.</p> </td></tr> </table> <h3>Value</h3> <p>A logical scalar. </p> <h3>Author(s)</h3> <p>Tamas Nepusz <a href="mailto:ntamas@gmail.com">ntamas@gmail.com</a> and Szabolcs Horvat <a href="mailto:szhorvat@gmail.com">szhorvat@gmail.com</a> </p> <h3>References</h3> <p>Z Kiraly, Recognizing graphic degree sequences and generating all realizations. TR-2011-11, Egervary Research Group, H-1117, Budapest, Hungary. ISSN 1587-4451 (2012). </p> <p>B. Cloteaux, Is This for Real? Fast Graphicality Testing, <em>Comput. Sci. Eng.</em> 17, 91 (2015). </p> <p>A. Berger, A note on the characterization of digraphic sequences, <em>Discrete Math.</em> 314, 38 (2014). </p> <p>G. Cairns and S. Mendan, Degree Sequence for Graphs with Loops (2013). </p> <h3>See Also</h3> <p>Other graphical degree sequences: <code><a href="is_graphical.html">is_graphical</a>()</code> </p> <h3>Examples</h3> <pre> g <- sample_gnp(100, 2/100) is_degseq(degree(g)) is_graphical(degree(g)) </pre> <hr /><div style="text-align: center;">[Package <em>igraph</em> version 1.3.5 <a href="00Index.html">Index</a>]</div> </body></html>