EVOLUTION-MANAGER
Edit File: glance.robustbase.lmrob.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><title>R: Glance at a(n) lmrob object</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="R.css" /> </head><body> <table width="100%" summary="page for glance.lmrob {broom}"><tr><td>glance.lmrob {broom}</td><td style="text-align: right;">R Documentation</td></tr></table> <h2>Glance at a(n) lmrob object</h2> <h3>Description</h3> <p>Glance accepts a model object and returns a <code><a href="../../tibble/html/tibble.html">tibble::tibble()</a></code> with exactly one row of model summaries. The summaries are typically goodness of fit measures, p-values for hypothesis tests on residuals, or model convergence information. </p> <p>Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function. </p> <p>Glance does not calculate summary measures. Rather, it farms out these computations to appropriate methods and gathers the results together. Sometimes a goodness of fit measure will be undefined. In these cases the measure will be reported as <code>NA</code>. </p> <p>Glance returns the same number of columns regardless of whether the model matrix is rank-deficient or not. If so, entries in columns that no longer have a well-defined value are filled in with an <code>NA</code> of the appropriate type. </p> <h3>Usage</h3> <pre> ## S3 method for class 'lmrob' glance(x, ...) </pre> <h3>Arguments</h3> <table summary="R argblock"> <tr valign="top"><td><code>x</code></td> <td> <p>A <code>lmrob</code> object returned from <code><a href="../../robustbase/html/lmrob.html">robustbase::lmrob()</a></code>.</p> </td></tr> <tr valign="top"><td><code>...</code></td> <td> <p>Additional arguments. Not used. Needed to match generic signature only. <strong>Cautionary note:</strong> Misspelled arguments will be absorbed in <code>...</code>, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass <code>conf.lvel = 0.9</code>, all computation will proceed using <code>conf.level = 0.95</code>. Additionally, if you pass <code>newdata = my_tibble</code> to an <code><a href="reexports.html">augment()</a></code> method that does not accept a <code>newdata</code> argument, it will use the default value for the <code>data</code> argument.</p> </td></tr> </table> <h3>Details</h3> <p>For tidiers for robust models from the <span class="pkg">MASS</span> package see <code><a href="tidy.rlm.html">tidy.rlm()</a></code>. </p> <h3>Value</h3> <p>A <code><a href="../../tibble/html/tibble.html">tibble::tibble()</a></code> with exactly one row and columns: </p> <table summary="R valueblock"> <tr valign="top"><td><code>df.residual</code></td> <td> <p>Residual degrees of freedom.</p> </td></tr> <tr valign="top"><td><code>r.squared</code></td> <td> <p>R squared statistic, or the percent of variation explained by the model. Also known as the coefficient of determination.</p> </td></tr> <tr valign="top"><td><code>sigma</code></td> <td> <p>Estimated standard error of the residuals.</p> </td></tr> </table> <h3>See Also</h3> <p><code><a href="../../robustbase/html/lmrob.html">robustbase::lmrob()</a></code> </p> <p>Other robustbase tidiers: <code><a href="augment.robustbase.glmrob.html">augment.glmrob</a>()</code>, <code><a href="augment.robustbase.lmrob.html">augment.lmrob</a>()</code>, <code><a href="tidy.robustbase.glmrob.html">tidy.glmrob</a>()</code>, <code><a href="tidy.robustbase.lmrob.html">tidy.lmrob</a>()</code> </p> <h3>Examples</h3> <pre> library(robustbase) # From the robustbase::lmrob examples: data(coleman) set.seed(0) m <- robustbase::lmrob(Y ~ ., data = coleman) tidy(m) augment(m) glance(m) # From the robustbase::glmrob examples: data(carrots) Rfit <- glmrob(cbind(success, total - success) ~ logdose + block, family = binomial, data = carrots, method = "Mqle", control = glmrobMqle.control(tcc = 1.2) ) tidy(Rfit) augment(Rfit) </pre> <hr /><div style="text-align: center;">[Package <em>broom</em> version 0.7.0 <a href="00Index.html">Index</a>]</div> </body></html>