EVOLUTION-MANAGER
Edit File: augment.mjoint.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><title>R: Augment data with information from a(n) mjoint object</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="R.css" /> </head><body> <table width="100%" summary="page for augment.mjoint {broom}"><tr><td>augment.mjoint {broom}</td><td style="text-align: right;">R Documentation</td></tr></table> <h2>Augment data with information from a(n) mjoint object</h2> <h3>Description</h3> <p>Augment accepts a model object and a dataset and adds information about each observation in the dataset. Most commonly, this includes predicted values in the <code>.fitted</code> column, residuals in the <code>.resid</code> column, and standard errors for the fitted values in a <code>.se.fit</code> column. New columns always begin with a <code>.</code> prefix to avoid overwriting columns in the original dataset. </p> <p>Users may pass data to augment via either the <code>data</code> argument or the <code>newdata</code> argument. If the user passes data to the <code>data</code> argument, it <strong>must</strong> be exactly the data that was used to fit the model object. Pass datasets to <code>newdata</code> to augment data that was not used during model fitting. This still requires that all columns used to fit the model are present. </p> <p>Augment will often behave differently depending on whether <code>data</code> or <code>newdata</code> is given. This is because there is often information associated with training observations (such as influences or related) measures that is not meaningfully defined for new observations. </p> <p>For convenience, many augment methods provide default <code>data</code> arguments, so that <code>augment(fit)</code> will return the augmented training data. In these cases, augment tries to reconstruct the original data based on the model object with varying degrees of success. </p> <p>The augmented dataset is always returned as a <a href="../../tibble/html/tibble.html">tibble::tibble</a> with the <strong>same number of rows</strong> as the passed dataset. This means that the passed data must be coercible to a tibble. At this time, tibbles do not support matrix-columns. This means you should not specify a matrix of covariates in a model formula during the original model fitting process, and that <code><a href="../../splines/html/ns.html">splines::ns()</a></code>, <code><a href="../../stats/html/poly.html">stats::poly()</a></code> and <code><a href="../../survival/html/Surv.html">survival::Surv()</a></code> objects are not supported in input data. If you encounter errors, try explicitly passing a tibble, or fitting the original model on data in a tibble. </p> <p>We are in the process of defining behaviors for models fit with various <code>na.action</code> arguments, but make no guarantees about behavior when data is missing at this time. </p> <h3>Usage</h3> <pre> ## S3 method for class 'mjoint' augment(x, data = x$data, ...) </pre> <h3>Arguments</h3> <table summary="R argblock"> <tr valign="top"><td><code>x</code></td> <td> <p>An <code>mjoint</code> object returned from <code><a href="../../joineRML/html/mjoint.html">joineRML::mjoint()</a></code>.</p> </td></tr> <tr valign="top"><td><code>data</code></td> <td> <p>A <a href="../../base/html/data.frame.html">base::data.frame</a> or <code><a href="../../tibble/html/tibble.html">tibble::tibble()</a></code> containing the original data that was used to produce the object <code>x</code>. Defaults to <code>stats::model.frame(x)</code> so that <code>augment(my_fit)</code> returns the augmented original data. <strong>Do not</strong> pass new data to the <code>data</code> argument. Augment will report information such as influence and cooks distance for data passed to the <code>data</code> argument. These measures are only defined for the original training data.</p> </td></tr> <tr valign="top"><td><code>...</code></td> <td> <p>Additional arguments. Not used. Needed to match generic signature only. <strong>Cautionary note:</strong> Misspelled arguments will be absorbed in <code>...</code>, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass <code>conf.lvel = 0.9</code>, all computation will proceed using <code>conf.level = 0.95</code>. Additionally, if you pass <code>newdata = my_tibble</code> to an <code><a href="reexports.html">augment()</a></code> method that does not accept a <code>newdata</code> argument, it will use the default value for the <code>data</code> argument.</p> </td></tr> </table> <h3>Details</h3> <p>See <code><a href="../../joineRML/html/fitted.mjoint.html">joineRML::fitted.mjoint()</a></code> and <code><a href="../../joineRML/html/residuals.mjoint.html">joineRML::residuals.mjoint()</a></code> for more information on the difference between population-level and individual-level fitted values and residuals. </p> <p>If fitting a joint model with a single longitudinal process, make sure you are using a named <code>list</code> to define the formula for the fixed and random effects of the longitudinal submodel. </p> <h3>Value</h3> <p>A <code><a href="../../tibble/html/tibble.html">tibble::tibble()</a></code> with one row for each original observation with addition columns: </p> <table summary="R valueblock"> <tr valign="top"><td><code>.fitted_j_0</code></td> <td> <p>population-level fitted values for the j-th longitudinal process</p> </td></tr> <tr valign="top"><td><code>.fitted_j_1</code></td> <td> <p>individuals-level fitted values for the j-th longitudinal process</p> </td></tr> <tr valign="top"><td><code>.resid_j_0</code></td> <td> <p>population-level residuals for the j-th longitudinal process</p> </td></tr> <tr valign="top"><td><code>.resid_j_1</code></td> <td> <p>individual-level residuals for the j-th longitudinal process</p> </td></tr> </table> <h3>Examples</h3> <pre> ## Not run: # Fit a joint model with bivariate longitudinal outcomes library(joineRML) data(heart.valve) hvd <- heart.valve[!is.na(heart.valve$log.grad) & !is.na(heart.valve$log.lvmi) & heart.valve$num <= 50, ] fit <- mjoint( formLongFixed = list( "grad" = log.grad ~ time + sex + hs, "lvmi" = log.lvmi ~ time + sex ), formLongRandom = list( "grad" = ~ 1 | num, "lvmi" = ~ time | num ), formSurv = Surv(fuyrs, status) ~ age, data = hvd, inits = list("gamma" = c(0.11, 1.51, 0.80)), timeVar = "time" ) # Extract the survival fixed effects tidy(fit) # Extract the longitudinal fixed effects tidy(fit, component = "longitudinal") # Extract the survival fixed effects with confidence intervals tidy(fit, ci = TRUE) # Extract the survival fixed effects with confidence intervals based # on bootstrapped standard errors bSE <- bootSE(fit, nboot = 5, safe.boot = TRUE) tidy(fit, boot_se = bSE, ci = TRUE) # Augment original data with fitted longitudinal values and residuals hvd2 <- augment(fit) # Extract model statistics glance(fit) ## End(Not run) </pre> <hr /><div style="text-align: center;">[Package <em>broom</em> version 0.7.0 <a href="00Index.html">Index</a>]</div> </body></html>