EVOLUTION-MANAGER
Edit File: gamma.shape.glm.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><title>R: Estimate the Shape Parameter of the Gamma Distribution in a...</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="R.css" /> </head><body> <table width="100%" summary="page for gamma.shape {MASS}"><tr><td>gamma.shape {MASS}</td><td style="text-align: right;">R Documentation</td></tr></table> <h2> Estimate the Shape Parameter of the Gamma Distribution in a GLM Fit </h2> <h3>Description</h3> <p>Find the maximum likelihood estimate of the shape parameter of the gamma distribution after fitting a <code>Gamma</code> generalized linear model. </p> <h3>Usage</h3> <pre> ## S3 method for class 'glm' gamma.shape(object, it.lim = 10, eps.max = .Machine$double.eps^0.25, verbose = FALSE, ...) </pre> <h3>Arguments</h3> <table summary="R argblock"> <tr valign="top"><td><code>object</code></td> <td> <p>Fitted model object from a <code>Gamma</code> family or <code>quasi</code> family with <code>variance = "mu^2"</code>. </p> </td></tr> <tr valign="top"><td><code>it.lim</code></td> <td> <p>Upper limit on the number of iterations. </p> </td></tr> <tr valign="top"><td><code>eps.max</code></td> <td> <p>Maximum discrepancy between approximations for the iteration process to continue. </p> </td></tr> <tr valign="top"><td><code>verbose</code></td> <td> <p>If <code>TRUE</code>, causes successive iterations to be printed out. The initial estimate is taken from the deviance. </p> </td></tr> <tr valign="top"><td><code>...</code></td> <td> <p>further arguments passed to or from other methods. </p> </td></tr></table> <h3>Details</h3> <p>A glm fit for a Gamma family correctly calculates the maximum likelihood estimate of the mean parameters but provides only a crude estimate of the dispersion parameter. This function takes the results of the glm fit and solves the maximum likelihood equation for the reciprocal of the dispersion parameter, which is usually called the shape (or exponent) parameter. </p> <h3>Value</h3> <p>List of two components </p> <table summary="R valueblock"> <tr valign="top"><td><code>alpha</code></td> <td> <p>the maximum likelihood estimate </p> </td></tr> <tr valign="top"><td><code>SE</code></td> <td> <p>the approximate standard error, the square-root of the reciprocal of the observed information. </p> </td></tr></table> <h3>References</h3> <p>Venables, W. N. and Ripley, B. D. (2002) <em>Modern Applied Statistics with S.</em> Fourth edition. Springer. </p> <h3>See Also</h3> <p><code><a href="gamma.dispersion.html">gamma.dispersion</a></code> </p> <h3>Examples</h3> <pre> clotting <- data.frame( u = c(5,10,15,20,30,40,60,80,100), lot1 = c(118,58,42,35,27,25,21,19,18), lot2 = c(69,35,26,21,18,16,13,12,12)) clot1 <- glm(lot1 ~ log(u), data = clotting, family = Gamma) gamma.shape(clot1) gm <- glm(Days + 0.1 ~ Age*Eth*Sex*Lrn, quasi(link=log, variance="mu^2"), quine, start = c(3, rep(0,31))) gamma.shape(gm, verbose = TRUE) summary(gm, dispersion = gamma.dispersion(gm)) # better summary </pre> <hr /><div style="text-align: center;">[Package <em>MASS</em> version 7.3-51.4 <a href="00Index.html">Index</a>]</div> </body></html>