EVOLUTION-MANAGER
Edit File: side_by_triangle.hpp
// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2015 Bruno Lalande, Paris, France. // Copyright (c) 2009-2015 Mateusz Loskot, London, UK. // This file was modified by Oracle on 2015, 2017, 2018, 2019. // Modifications copyright (c) 2015-2019, Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_SIDE_BY_TRIANGLE_HPP #define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_SIDE_BY_TRIANGLE_HPP #include <boost/mpl/if.hpp> #include <boost/type_traits/is_integral.hpp> #include <boost/type_traits/is_void.hpp> #include <boost/geometry/arithmetic/determinant.hpp> #include <boost/geometry/core/access.hpp> #include <boost/geometry/util/select_coordinate_type.hpp> #include <boost/geometry/strategies/cartesian/disjoint_segment_box.hpp> #include <boost/geometry/strategies/cartesian/envelope.hpp> #include <boost/geometry/strategies/cartesian/point_in_point.hpp> #include <boost/geometry/strategies/compare.hpp> #include <boost/geometry/strategies/side.hpp> #include <boost/geometry/algorithms/detail/equals/point_point.hpp> namespace boost { namespace geometry { namespace strategy { namespace side { /*! \brief Check at which side of a segment a point lies: left of segment (> 0), right of segment (< 0), on segment (0) \ingroup strategies \tparam CalculationType \tparam_calculation */ template <typename CalculationType = void> class side_by_triangle { template <typename Policy> struct eps_policy { eps_policy() {} template <typename Type> eps_policy(Type const& a, Type const& b, Type const& c, Type const& d) : policy(a, b, c, d) {} Policy policy; }; struct eps_empty { eps_empty() {} template <typename Type> eps_empty(Type const&, Type const&, Type const&, Type const&) {} }; public : typedef cartesian_tag cs_tag; typedef strategy::envelope::cartesian<CalculationType> envelope_strategy_type; static inline envelope_strategy_type get_envelope_strategy() { return envelope_strategy_type(); } typedef strategy::disjoint::segment_box disjoint_strategy_type; static inline disjoint_strategy_type get_disjoint_strategy() { return disjoint_strategy_type(); } typedef strategy::within::cartesian_point_point equals_point_point_strategy_type; static inline equals_point_point_strategy_type get_equals_point_point_strategy() { return equals_point_point_strategy_type(); } // Template member function, because it is not always trivial // or convenient to explicitly mention the typenames in the // strategy-struct itself. // Types can be all three different. Therefore it is // not implemented (anymore) as "segment" template < typename CoordinateType, typename PromotedType, typename P1, typename P2, typename P, typename EpsPolicy > static inline PromotedType side_value(P1 const& p1, P2 const& p2, P const& p, EpsPolicy & eps_policy) { CoordinateType const x = get<0>(p); CoordinateType const y = get<1>(p); CoordinateType const sx1 = get<0>(p1); CoordinateType const sy1 = get<1>(p1); CoordinateType const sx2 = get<0>(p2); CoordinateType const sy2 = get<1>(p2); PromotedType const dx = sx2 - sx1; PromotedType const dy = sy2 - sy1; PromotedType const dpx = x - sx1; PromotedType const dpy = y - sy1; eps_policy = EpsPolicy(dx, dy, dpx, dpy); return geometry::detail::determinant<PromotedType> ( dx, dy, dpx, dpy ); } template < typename CoordinateType, typename PromotedType, typename P1, typename P2, typename P > static inline PromotedType side_value(P1 const& p1, P2 const& p2, P const& p) { eps_empty dummy; return side_value<CoordinateType, PromotedType>(p1, p2, p, dummy); } template < typename CoordinateType, typename PromotedType, bool AreAllIntegralCoordinates > struct compute_side_value { template <typename P1, typename P2, typename P, typename EpsPolicy> static inline PromotedType apply(P1 const& p1, P2 const& p2, P const& p, EpsPolicy & epsp) { return side_value<CoordinateType, PromotedType>(p1, p2, p, epsp); } }; template <typename CoordinateType, typename PromotedType> struct compute_side_value<CoordinateType, PromotedType, false> { template <typename P1, typename P2, typename P, typename EpsPolicy> static inline PromotedType apply(P1 const& p1, P2 const& p2, P const& p, EpsPolicy & epsp) { // For robustness purposes, first check if any two points are // the same; in this case simply return that the points are // collinear if (equals_point_point(p1, p2) || equals_point_point(p1, p) || equals_point_point(p2, p)) { return PromotedType(0); } // The side_by_triangle strategy computes the signed area of // the point triplet (p1, p2, p); as such it is (in theory) // invariant under cyclic permutations of its three arguments. // // In the context of numerical errors that arise in // floating-point computations, and in order to make the strategy // consistent with respect to cyclic permutations of its three // arguments, we cyclically permute them so that the first // argument is always the lexicographically smallest point. typedef compare::cartesian<compare::less> less; if (less::apply(p, p1)) { if (less::apply(p, p2)) { // p is the lexicographically smallest return side_value<CoordinateType, PromotedType>(p, p1, p2, epsp); } else { // p2 is the lexicographically smallest return side_value<CoordinateType, PromotedType>(p2, p, p1, epsp); } } if (less::apply(p1, p2)) { // p1 is the lexicographically smallest return side_value<CoordinateType, PromotedType>(p1, p2, p, epsp); } else { // p2 is the lexicographically smallest return side_value<CoordinateType, PromotedType>(p2, p, p1, epsp); } } }; template <typename P1, typename P2, typename P> static inline int apply(P1 const& p1, P2 const& p2, P const& p) { typedef typename coordinate_type<P1>::type coordinate_type1; typedef typename coordinate_type<P2>::type coordinate_type2; typedef typename coordinate_type<P>::type coordinate_type3; typedef typename boost::mpl::if_c < boost::is_void<CalculationType>::type::value, typename select_most_precise < typename select_most_precise < coordinate_type1, coordinate_type2 >::type, coordinate_type3 >::type, CalculationType >::type coordinate_type; // Promote float->double, small int->int typedef typename select_most_precise < coordinate_type, double >::type promoted_type; bool const are_all_integral_coordinates = boost::is_integral<coordinate_type1>::value && boost::is_integral<coordinate_type2>::value && boost::is_integral<coordinate_type3>::value; eps_policy< math::detail::equals_factor_policy<promoted_type> > epsp; promoted_type s = compute_side_value < coordinate_type, promoted_type, are_all_integral_coordinates >::apply(p1, p2, p, epsp); promoted_type const zero = promoted_type(); return math::detail::equals_by_policy(s, zero, epsp.policy) ? 0 : s > zero ? 1 : -1; } private: template <typename P1, typename P2> static inline bool equals_point_point(P1 const& p1, P2 const& p2) { typedef equals_point_point_strategy_type strategy_t; return geometry::detail::equals::equals_point_point(p1, p2, strategy_t()); } }; #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS namespace services { template <typename CalculationType> struct default_strategy<cartesian_tag, CalculationType> { typedef side_by_triangle<CalculationType> type; }; } #endif }} // namespace strategy::side }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_SIDE_BY_TRIANGLE_HPP