EVOLUTION-MANAGER
Edit File: yj_trans.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><title>R: Yeo-Johnson transformation</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="R.css" /> </head><body> <table width="100%" summary="page for yj_trans {scales}"><tr><td>yj_trans {scales}</td><td style="text-align: right;">R Documentation</td></tr></table> <h2>Yeo-Johnson transformation</h2> <h3>Description</h3> <p>The Yeo-Johnson transformation is a flexible transformation that is similiar to Box-Cox, <code><a href="boxcox_trans.html">boxcox_trans()</a></code>, but does not require input values to be greater than zero. </p> <h3>Usage</h3> <pre> yj_trans(p) </pre> <h3>Arguments</h3> <table summary="R argblock"> <tr valign="top"><td><code>p</code></td> <td> <p>Transformation exponent, <i>λ</i>.</p> </td></tr> </table> <h3>Details</h3> <p>The transformation takes one of four forms depending on the values of <code>y</code> and <i>λ</i>. </p> <ul> <li> <p><i>y ≥ 0</i> and <i>λ != 0</i> : <i>y^(λ) = ((y + 1)^λ - 1)/λ</i> </p> </li> <li> <p><i>y ≥ 0</i> and <i>λ = 0</i>: <i>y^(λ) = ln(y + 1)</i> </p> </li> <li> <p><i>y < 0</i> and <i>λ != 2</i>: <i>y^(λ) = -((-y + 1)^(2 - λ) - 1)/(2 - λ)</i> </p> </li> <li> <p><i>y < 0</i> and <i>λ = 2</i>: <i>y^(λ) = -ln(-y + 1)</i> </p> </li></ul> <h3>References</h3> <p>Yeo, I., & Johnson, R. (2000). A New Family of Power Transformations to Improve Normality or Symmetry. Biometrika, 87(4), 954-959. <a href="http://www.jstor.org/stable/2673623">http://www.jstor.org/stable/2673623</a> </p> <h3>Examples</h3> <pre> plot(yj_trans(-1), xlim = c(-10, 10)) plot(yj_trans(0), xlim = c(-10, 10)) plot(yj_trans(1), xlim = c(-10, 10)) plot(yj_trans(2), xlim = c(-10, 10)) </pre> <hr /><div style="text-align: center;">[Package <em>scales</em> version 1.1.1 <a href="00Index.html">Index</a>]</div> </body></html>