EVOLUTION-MANAGER
Edit File: knitr-html.html
<!DOCTYPE html> <html> <!-- %\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{An R HTML Vignette with knitr} --> <head> <style type="text/css"> .inline { background-color: #f7f7f7; border:solid 1px #B0B0B0; } .error { font-weight: bold; color: #FF0000; } .warning { font-weight: bold; } .message { font-style: italic; } .source, .output, .warning, .error, .message { padding: 0 1em; border:solid 1px #F7F7F7; } .source { background-color: #f5f5f5; } .left { text-align: left; } .right { text-align: right; } .center { text-align: center; } .hl.num { color: #AF0F91; } .hl.str { color: #317ECC; } .hl.com { color: #AD95AF; font-style: italic; } .hl.opt { color: #000000; } .hl.std { color: #585858; } .hl.kwa { color: #295F94; font-weight: bold; } .hl.kwb { color: #B05A65; } .hl.kwc { color: #55aa55; } .hl.kwd { color: #BC5A65; font-weight: bold; } </style> <meta charset="utf-8"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <style type="text/css"> body,td{width:800px;margin:auto;} </style> <title>An R HTML vignette with knitr</title> </head> <body> <p>This is an R HTML vignette. The file extension is <code>*.Rhtml</code>, and it has to include a special comment to tell R that this file needs to be compiled by <strong>knitr</strong>:</p> <pre><!-- %\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{The Title of Your Vignette} --> </pre> <p>Now you can write R code chunks:</p> <div class="chunk" id="cars-demo"><div class="rcode"><div class="source"><pre class="knitr r"><span class="hl kwd">summary</span><span class="hl std">(cars)</span> </pre></div> <div class="output"><pre class="knitr r">## speed dist ## Min. : 4.0 Min. : 2 ## 1st Qu.:12.0 1st Qu.: 26 ## Median :15.0 Median : 36 ## Mean :15.4 Mean : 43 ## 3rd Qu.:19.0 3rd Qu.: 56 ## Max. :25.0 Max. :120 </pre></div> <div class="source"><pre class="knitr r"><span class="hl std">fit</span><span class="hl kwb">=</span><span class="hl kwd">lm</span><span class="hl std">(dist</span><span class="hl opt">~</span><span class="hl std">speed,</span> <span class="hl kwc">data</span><span class="hl std">=cars)</span> <span class="hl kwd">summary</span><span class="hl std">(fit)</span> </pre></div> <div class="output"><pre class="knitr r">## ## Call: ## lm(formula = dist ~ speed, data = cars) ## ## Residuals: ## Min 1Q Median 3Q Max ## -29.07 -9.53 -2.27 9.21 43.20 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -17.579 6.758 -2.60 0.012 * ## speed 3.932 0.416 9.46 1.5e-12 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 15.4 on 48 degrees of freedom ## Multiple R-squared: 0.651, Adjusted R-squared: 0.644 ## F-statistic: 89.6 on 1 and 48 DF, p-value: 1.49e-12 </pre></div> </div></div> <p>You can also embed plots, for example:</p> <div class="chunk" id="cars-plot"><div class="rcode"><div class="source"><pre class="knitr r"><span class="hl kwd">par</span><span class="hl std">(</span><span class="hl kwc">mar</span><span class="hl std">=</span><span class="hl kwd">c</span><span class="hl std">(</span><span class="hl num">4</span><span class="hl std">,</span><span class="hl num">4</span><span class="hl std">,</span><span class="hl num">.1</span><span class="hl std">,</span><span class="hl num">.1</span><span class="hl std">))</span> <span class="hl kwd">plot</span><span class="hl std">(cars,</span> <span class="hl kwc">pch</span><span class="hl std">=</span><span class="hl num">19</span><span class="hl std">)</span> </pre></div> </div><div class="rimage center"><img src="" title="plot of chunk cars-plot" alt="plot of chunk cars-plot" class="plot" /></div></div> <p>For package vignettes, you need to encode images in base64 strings using the <code>knitr::image_uri()</code> function so that the image files are no longer needed after the vignette is compiled. For example, you can add this chunk in the beginning of a vignette:</p> <div class="chunk" id="setup"><div class="rcode"><div class="source"><pre class="knitr r"><span class="hl kwd">library</span><span class="hl std">(knitr)</span> <span class="hl com"># to base64 encode images</span> <span class="hl std">opts_knit</span><span class="hl opt">$</span><span class="hl kwd">set</span><span class="hl std">(</span><span class="hl kwc">upload.fun</span> <span class="hl std">= image_uri)</span> </pre></div> </div></div> </body> </html>