EVOLUTION-MANAGER
Edit File: glance.rma.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><title>R: Glance at a(n) rma object</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="R.css" /> </head><body> <table width="100%" summary="page for glance.rma {broom}"><tr><td>glance.rma {broom}</td><td style="text-align: right;">R Documentation</td></tr></table> <h2>Glance at a(n) rma object</h2> <h3>Description</h3> <p>Glance accepts a model object and returns a <code><a href="../../tibble/html/tibble.html">tibble::tibble()</a></code> with exactly one row of model summaries. The summaries are typically goodness of fit measures, p-values for hypothesis tests on residuals, or model convergence information. </p> <p>Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function. </p> <p>Glance does not calculate summary measures. Rather, it farms out these computations to appropriate methods and gathers the results together. Sometimes a goodness of fit measure will be undefined. In these cases the measure will be reported as <code>NA</code>. </p> <p>Glance returns the same number of columns regardless of whether the model matrix is rank-deficient or not. If so, entries in columns that no longer have a well-defined value are filled in with an <code>NA</code> of the appropriate type. </p> <h3>Usage</h3> <pre> ## S3 method for class 'rma' glance(x, ...) </pre> <h3>Arguments</h3> <table summary="R argblock"> <tr valign="top"><td><code>x</code></td> <td> <p>An <code>rma</code> object such as those created by <code><a href="../../metafor/html/rma.uni.html">metafor::rma()</a></code>, <code><a href="../../metafor/html/rma.uni.html">metafor::rma.uni()</a></code>, <code><a href="../../metafor/html/rma.glmm.html">metafor::rma.glmm()</a></code>, <code><a href="../../metafor/html/rma.mh.html">metafor::rma.mh()</a></code>, <code><a href="../../metafor/html/rma.mv.html">metafor::rma.mv()</a></code>, or <code><a href="../../metafor/html/rma.peto.html">metafor::rma.peto()</a></code>.</p> </td></tr> <tr valign="top"><td><code>...</code></td> <td> <p>Additional arguments. Not used. Needed to match generic signature only. <strong>Cautionary note:</strong> Misspelled arguments will be absorbed in <code>...</code>, where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass <code>conf.lvel = 0.9</code>, all computation will proceed using <code>conf.level = 0.95</code>. Additionally, if you pass <code>newdata = my_tibble</code> to an <code><a href="reexports.html">augment()</a></code> method that does not accept a <code>newdata</code> argument, it will use the default value for the <code>data</code> argument.</p> </td></tr> </table> <h3>Value</h3> <p>A <code><a href="../../tibble/html/tibble.html">tibble::tibble()</a></code> with exactly one row and columns: </p> <table summary="R valueblock"> <tr valign="top"><td><code>cochran.qe</code></td> <td> <p>In meta-analysis, test statistic for the Cochran's Q_e test of residual heterogeneity.</p> </td></tr> <tr valign="top"><td><code>cochran.qm</code></td> <td> <p>In meta-analysis, test statistic for the Cochran's Q_m omnibus test of coefficients.</p> </td></tr> <tr valign="top"><td><code>df.residual</code></td> <td> <p>Residual degrees of freedom.</p> </td></tr> <tr valign="top"><td><code>h.squared</code></td> <td> <p>Value of the H-Squared statistic.</p> </td></tr> <tr valign="top"><td><code>i.squared</code></td> <td> <p>Value of the I-Squared statistic.</p> </td></tr> <tr valign="top"><td><code>measure</code></td> <td> <p>The measure used in the meta-analysis.</p> </td></tr> <tr valign="top"><td><code>method</code></td> <td> <p>Which method was used.</p> </td></tr> <tr valign="top"><td><code>nobs</code></td> <td> <p>Number of observations used.</p> </td></tr> <tr valign="top"><td><code>p.value.cochran.qe</code></td> <td> <p>In meta-analysis, p-value for the Cochran's Q_e test of residual heterogeneity.</p> </td></tr> <tr valign="top"><td><code>p.value.cochran.qm</code></td> <td> <p>In meta-analysis, p-value for the Cochran's Q_m omnibus test of coefficients.</p> </td></tr> <tr valign="top"><td><code>tau.squared</code></td> <td> <p>In meta-analysis, estimated amount of residual heterogeneity.</p> </td></tr> <tr valign="top"><td><code>tau.squared.se</code></td> <td> <p>In meta-analysis, standard error of residual heterogeneity.</p> </td></tr> </table> <h3>Examples</h3> <pre> library(metafor) df <- escalc( measure = "RR", ai = tpos, bi = tneg, ci = cpos, di = cneg, data = dat.bcg ) meta_analysis <- rma(yi, vi, data = df, method = "EB") glance(meta_analysis) </pre> <hr /><div style="text-align: center;">[Package <em>broom</em> version 0.7.0 <a href="00Index.html">Index</a>]</div> </body></html>