EVOLUTION-MANAGER
Edit File: housing.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><title>R: Frequency Table from a Copenhagen Housing Conditions Survey</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="R.css" /> </head><body> <table width="100%" summary="page for housing {MASS}"><tr><td>housing {MASS}</td><td style="text-align: right;">R Documentation</td></tr></table> <h2> Frequency Table from a Copenhagen Housing Conditions Survey </h2> <h3>Description</h3> <p>The <code>housing</code> data frame has 72 rows and 5 variables. </p> <h3>Usage</h3> <pre> housing </pre> <h3>Format</h3> <dl> <dt><code>Sat</code></dt><dd> <p>Satisfaction of householders with their present housing circumstances, (High, Medium or Low, ordered factor). </p> </dd> <dt><code>Infl</code></dt><dd> <p>Perceived degree of influence householders have on the management of the property (High, Medium, Low). </p> </dd> <dt><code>Type</code></dt><dd> <p>Type of rental accommodation, (Tower, Atrium, Apartment, Terrace). </p> </dd> <dt><code>Cont</code></dt><dd> <p>Contact residents are afforded with other residents, (Low, High). </p> </dd> <dt><code>Freq</code></dt><dd> <p>Frequencies: the numbers of residents in each class. </p> </dd> </dl> <h3>Source</h3> <p>Madsen, M. (1976) Statistical analysis of multiple contingency tables. Two examples. <em>Scand. J. Statist.</em> <b>3</b>, 97–106. </p> <p>Cox, D. R. and Snell, E. J. (1984) <em>Applied Statistics, Principles and Examples</em>. Chapman & Hall. </p> <h3>References</h3> <p>Venables, W. N. and Ripley, B. D. (2002) <em>Modern Applied Statistics with S.</em> Fourth edition. Springer. </p> <h3>Examples</h3> <pre> options(contrasts = c("contr.treatment", "contr.poly")) # Surrogate Poisson models house.glm0 <- glm(Freq ~ Infl*Type*Cont + Sat, family = poisson, data = housing) summary(house.glm0, cor = FALSE) addterm(house.glm0, ~. + Sat:(Infl+Type+Cont), test = "Chisq") house.glm1 <- update(house.glm0, . ~ . + Sat*(Infl+Type+Cont)) summary(house.glm1, cor = FALSE) 1 - pchisq(deviance(house.glm1), house.glm1$df.residual) dropterm(house.glm1, test = "Chisq") addterm(house.glm1, ~. + Sat:(Infl+Type+Cont)^2, test = "Chisq") hnames <- lapply(housing[, -5], levels) # omit Freq newData <- expand.grid(hnames) newData$Sat <- ordered(newData$Sat) house.pm <- predict(house.glm1, newData, type = "response") # poisson means house.pm <- matrix(house.pm, ncol = 3, byrow = TRUE, dimnames = list(NULL, hnames[[1]])) house.pr <- house.pm/drop(house.pm %*% rep(1, 3)) cbind(expand.grid(hnames[-1]), round(house.pr, 2)) # Iterative proportional scaling loglm(Freq ~ Infl*Type*Cont + Sat*(Infl+Type+Cont), data = housing) # multinomial model library(nnet) (house.mult<- multinom(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)) house.mult2 <- multinom(Sat ~ Infl*Type*Cont, weights = Freq, data = housing) anova(house.mult, house.mult2) house.pm <- predict(house.mult, expand.grid(hnames[-1]), type = "probs") cbind(expand.grid(hnames[-1]), round(house.pm, 2)) # proportional odds model house.cpr <- apply(house.pr, 1, cumsum) logit <- function(x) log(x/(1-x)) house.ld <- logit(house.cpr[2, ]) - logit(house.cpr[1, ]) (ratio <- sort(drop(house.ld))) mean(ratio) (house.plr <- polr(Sat ~ Infl + Type + Cont, data = housing, weights = Freq)) house.pr1 <- predict(house.plr, expand.grid(hnames[-1]), type = "probs") cbind(expand.grid(hnames[-1]), round(house.pr1, 2)) Fr <- matrix(housing$Freq, ncol = 3, byrow = TRUE) 2*sum(Fr*log(house.pr/house.pr1)) house.plr2 <- stepAIC(house.plr, ~.^2) house.plr2$anova </pre> <hr /><div style="text-align: center;">[Package <em>MASS</em> version 7.3-51.4 <a href="00Index.html">Index</a>]</div> </body></html>