EVOLUTION-MANAGER
Edit File: tidy-data.R
## ---- echo = FALSE------------------------------------------------------------ knitr::opts_chunk$set(collapse = TRUE, comment = "#>") set.seed(1014) options(dplyr.print_max = 10) ## ----------------------------------------------------------------------------- classroom <- read.csv("classroom.csv", stringsAsFactors = FALSE) classroom ## ----------------------------------------------------------------------------- read.csv("classroom2.csv", stringsAsFactors = FALSE) ## ----setup, message = FALSE--------------------------------------------------- library(tidyr) library(dplyr) ## ----------------------------------------------------------------------------- classroom2 <- classroom %>% pivot_longer(quiz1:test1, names_to = "assessment", values_to = "grade") %>% arrange(name, assessment) classroom2 ## ----------------------------------------------------------------------------- relig_income ## ----------------------------------------------------------------------------- relig_income %>% pivot_longer(-religion, names_to = "income", values_to = "frequency") ## ----------------------------------------------------------------------------- billboard ## ----------------------------------------------------------------------------- billboard2 <- billboard %>% pivot_longer( wk1:wk76, names_to = "week", values_to = "rank", values_drop_na = TRUE ) billboard2 ## ----------------------------------------------------------------------------- billboard3 <- billboard2 %>% mutate( week = as.integer(gsub("wk", "", week)), date = as.Date(date.entered) + 7 * (week - 1), date.entered = NULL ) billboard3 ## ----------------------------------------------------------------------------- billboard3 %>% arrange(artist, track, week) ## ----------------------------------------------------------------------------- billboard3 %>% arrange(date, rank) ## ----------------------------------------------------------------------------- tb <- as_tibble(read.csv("tb.csv", stringsAsFactors = FALSE)) tb ## ----------------------------------------------------------------------------- tb2 <- tb %>% pivot_longer( !c(iso2, year), names_to = "demo", values_to = "n", values_drop_na = TRUE ) tb2 ## ----------------------------------------------------------------------------- tb3 <- tb2 %>% separate(demo, c("sex", "age"), 1) tb3 ## ----------------------------------------------------------------------------- tb %>% pivot_longer( !c(iso2, year), names_to = c("sex", "age"), names_pattern = "(.)(.+)", values_to = "n", values_drop_na = TRUE ) ## ----------------------------------------------------------------------------- weather <- as_tibble(read.csv("weather.csv", stringsAsFactors = FALSE)) weather ## ----------------------------------------------------------------------------- weather2 <- weather %>% pivot_longer( d1:d31, names_to = "day", values_to = "value", values_drop_na = TRUE ) weather2 ## ----------------------------------------------------------------------------- weather3 <- weather2 %>% mutate(day = as.integer(gsub("d", "", day))) %>% select(id, year, month, day, element, value) weather3 ## ----------------------------------------------------------------------------- weather3 %>% pivot_wider(names_from = element, values_from = value) ## ----------------------------------------------------------------------------- song <- billboard3 %>% distinct(artist, track) %>% mutate(song_id = row_number()) song ## ----------------------------------------------------------------------------- rank <- billboard3 %>% left_join(song, c("artist", "track")) %>% select(song_id, date, week, rank) rank ## ---- eval = FALSE------------------------------------------------------------ # library(purrr) # paths <- dir("data", pattern = "\\.csv$", full.names = TRUE) # names(paths) <- basename(paths) # map_dfr(paths, read.csv, stringsAsFactors = FALSE, .id = "filename")