EVOLUTION-MANAGER
Edit File: Sl.setup.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><title>R: Setting up a list representing a block diagonal penalty...</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="R.css" /> </head><body> <table width="100%" summary="page for Sl.setup {mgcv}"><tr><td>Sl.setup {mgcv}</td><td style="text-align: right;">R Documentation</td></tr></table> <h2>Setting up a list representing a block diagonal penalty matrix</h2> <h3>Description</h3> <p>INTERNAL function for setting up a list representing a block diagonal penalty matrix from the object produced by <code>gam.setup</code>. </p> <h3>Usage</h3> <pre> Sl.setup(G) </pre> <h3>Arguments</h3> <table summary="R argblock"> <tr valign="top"><td><code>G</code></td> <td> <p>the output of <code>gam.setup</code>.</p> </td></tr> </table> <h3>Value</h3> <p>A list with an element for each block. For block, b, <code>Sl[[b]]</code> is a list with the following elements </p> <ul> <li><p><code>repara</code>: should re-parameterization be applied to model matrix, etc? Usually <code>FALSE</code> if non-linear in coefficients. </p> </li> <li><p><code>start, stop</code>: such that <code>start:stop</code> are the indexes of the parameters of this block. </p> </li> <li><p><code>S</code>: a list of penalty matrices for the block (<code>dim = stop-start+1</code>) If <code>length(S)==1</code> then this will be an identity penalty. Otherwise it is a multiple penalty, and an <code>rS</code> list of square root penalty matrices will be added. <code>S</code> (if <code>repara==TRUE</code>) and <code>rS</code> (always) will be projected into range space of total penalty matrix. </p> </li> <li><p><code>rS</code>: square root of penalty matrices if multiple penalties are used. </p> </li> <li><p><code>D</code>: a reparameterization matrix for the block. Applies to cols/params in <code>start:stop</code>. If numeric then <code>X[,start:stop]%*%diag(D)</code> is re-parametrization of <code>X[,start:stop]</code>, and <code>b.orig = D*b.repara</code> (where <code>b.orig</code> is the original parameter vector). If matrix then <code>X[,start:stop]%*%D</code> is re-parametrization of <code>X[,start:stop]</code>, and <code>b.orig = D%*%b.repara</code> (where <code>b.orig</code> is the original parameter vector). </p> </li></ul> <h3>Author(s)</h3> <p>Simon N. Wood <simon.wood@r-project.org>. </p> <hr /><div style="text-align: center;">[Package <em>mgcv</em> version 1.8-28 <a href="00Index.html">Index</a>]</div> </body></html>