EVOLUTION-MANAGER
Edit File: translate_qplot_lattice.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><title>R: Translating between qplot and lattice</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="R.css" /> </head><body> <table width="100%" summary="page for translate_qplot_lattice {ggplot2}"><tr><td>translate_qplot_lattice {ggplot2}</td><td style="text-align: right;">R Documentation</td></tr></table> <h2>Translating between qplot and lattice</h2> <h3>Description</h3> <p>The major difference between lattice and ggplot2 is that lattice uses a formula based interface. ggplot2 does not because the formula does not generalise well to more complicated situations. </p> <h3>Examples</h3> <pre> library(lattice) if (require("ggplot2movies")) { xyplot(rating ~ year, data=movies) qplot(year, rating, data=movies) xyplot(rating ~ year | Comedy + Action, data = movies) qplot(year, rating, data = movies, facets = ~ Comedy + Action) # Or maybe qplot(year, rating, data = movies, facets = Comedy ~ Action) # While lattice has many different functions to produce different types of # graphics (which are all basically equivalent to setting the panel argument), # ggplot2 has qplot(). stripplot(~ rating, data = movies, jitter.data = TRUE) qplot(rating, 1, data = movies, geom = "jitter") histogram(~ rating, data = movies) qplot(rating, data = movies, geom = "histogram") bwplot(Comedy ~ rating ,data = movies) qplot(factor(Comedy), rating, data = movies, geom = "boxplot") xyplot(wt ~ mpg, mtcars, type = c("p","smooth")) qplot(mpg, wt, data = mtcars, geom = c("point","smooth")) } # The capabilities for scale manipulations are similar in both ggplot2 and # lattice, although the syntax is a little different. xyplot(wt ~ mpg | cyl, mtcars, scales = list(y = list(relation = "free"))) qplot(mpg, wt, data = mtcars) + facet_wrap(~ cyl, scales = "free") xyplot(wt ~ mpg | cyl, mtcars, scales = list(log = 10)) qplot(mpg, wt, data = mtcars, log = "xy") xyplot(wt ~ mpg | cyl, mtcars, scales = list(log = 2)) qplot(mpg, wt, data = mtcars) + scale_x_continuous(trans = scales::log2_trans()) + scale_y_continuous(trans = scales::log2_trans()) xyplot(wt ~ mpg, mtcars, group = cyl, auto.key = TRUE) # Map directly to an aesthetic like colour, size, or shape. qplot(mpg, wt, data = mtcars, colour = cyl) xyplot(wt ~ mpg, mtcars, xlim = c(20,30)) # Works like lattice, except you can't specify a different limit # for each panel/facet qplot(mpg, wt, data = mtcars, xlim = c(20,30)) # Both lattice and ggplot2 have similar options for controlling labels on the plot. xyplot(wt ~ mpg, mtcars, xlab = "Miles per gallon", ylab = "Weight", main = "Weight-efficiency tradeoff") qplot(mpg, wt, data = mtcars, xlab = "Miles per gallon", ylab = "Weight", main = "Weight-efficiency tradeoff") xyplot(wt ~ mpg, mtcars, aspect = 1) qplot(mpg, wt, data = mtcars, asp = 1) # par.settings() is equivalent to + theme() and trellis.options.set() # and trellis.par.get() to theme_set() and theme_get(). # More complicated lattice formulas are equivalent to rearranging the data # before using ggplot2. </pre> <hr /><div style="text-align: center;">[Package <em>ggplot2</em> version 3.3.2 <a href="00Index.html">Index</a>]</div> </body></html>