EVOLUTION-MANAGER
Edit File: unordered_map.hpp
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard. // Copyright (C) 2005-2011 Daniel James. // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org/libs/unordered for documentation #ifndef BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED #define BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED #include <boost/config.hpp> #if defined(BOOST_HAS_PRAGMA_ONCE) #pragma once #endif #include <boost/core/explicit_operator_bool.hpp> #include <boost/functional/hash.hpp> #include <boost/move/move.hpp> #include <boost/type_traits/is_constructible.hpp> #include <boost/unordered/detail/map.hpp> #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) #include <initializer_list> #endif #if defined(BOOST_MSVC) #pragma warning(push) // conditional expression is constant #pragma warning(disable : 4127) #if BOOST_MSVC >= 1400 // the inline specifier cannot be used when a friend declaration refers to a // specialization of a function template #pragma warning(disable : 4396) #endif #endif namespace boost { namespace unordered { template <class K, class T, class H, class P, class A> class unordered_map { #if defined(BOOST_UNORDERED_USE_MOVE) BOOST_COPYABLE_AND_MOVABLE(unordered_map) #endif template <typename, typename, typename, typename, typename> friend class unordered_multimap; public: typedef K key_type; typedef T mapped_type; typedef std::pair<const K, T> value_type; typedef H hasher; typedef P key_equal; typedef A allocator_type; private: typedef boost::unordered::detail::map<A, K, T, H, P> types; typedef typename types::value_allocator_traits value_allocator_traits; typedef typename types::table table; typedef typename table::node_pointer node_pointer; typedef typename table::link_pointer link_pointer; public: typedef typename value_allocator_traits::pointer pointer; typedef typename value_allocator_traits::const_pointer const_pointer; typedef value_type& reference; typedef value_type const& const_reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef typename table::iterator iterator; typedef typename table::c_iterator const_iterator; typedef typename table::l_iterator local_iterator; typedef typename table::cl_iterator const_local_iterator; typedef typename types::node_type node_type; typedef typename types::insert_return_type insert_return_type; private: table table_; public: // constructors unordered_map(); explicit unordered_map(size_type, const hasher& = hasher(), const key_equal& = key_equal(), const allocator_type& = allocator_type()); template <class InputIt> unordered_map(InputIt, InputIt, size_type = boost::unordered::detail::default_bucket_count, const hasher& = hasher(), const key_equal& = key_equal(), const allocator_type& = allocator_type()); unordered_map(unordered_map const&); #if defined(BOOST_UNORDERED_USE_MOVE) || \ !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) unordered_map(BOOST_RV_REF(unordered_map) other) BOOST_NOEXCEPT_IF(table::nothrow_move_constructible) : table_(other.table_, boost::unordered::detail::move_tag()) { // The move is done in table_ } #endif explicit unordered_map(allocator_type const&); unordered_map(unordered_map const&, allocator_type const&); unordered_map(BOOST_RV_REF(unordered_map), allocator_type const&); #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) unordered_map(std::initializer_list<value_type>, size_type = boost::unordered::detail::default_bucket_count, const hasher& = hasher(), const key_equal& l = key_equal(), const allocator_type& = allocator_type()); #endif explicit unordered_map(size_type, const allocator_type&); explicit unordered_map(size_type, const hasher&, const allocator_type&); template <class InputIt> unordered_map(InputIt, InputIt, size_type, const allocator_type&); template <class InputIt> unordered_map( InputIt, InputIt, size_type, const hasher&, const allocator_type&); #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) unordered_map( std::initializer_list<value_type>, size_type, const allocator_type&); unordered_map(std::initializer_list<value_type>, size_type, const hasher&, const allocator_type&); #endif // Destructor ~unordered_map() BOOST_NOEXCEPT; // Assign #if defined(BOOST_UNORDERED_USE_MOVE) unordered_map& operator=(BOOST_COPY_ASSIGN_REF(unordered_map) x) { table_.assign(x.table_, boost::unordered::detail::true_type()); return *this; } unordered_map& operator=(BOOST_RV_REF(unordered_map) x) BOOST_NOEXCEPT_IF(value_allocator_traits::is_always_equal::value&& boost::is_nothrow_move_assignable<H>::value&& boost::is_nothrow_move_assignable<P>::value) { table_.move_assign(x.table_, boost::unordered::detail::true_type()); return *this; } #else unordered_map& operator=(unordered_map const& x) { table_.assign(x.table_, boost::unordered::detail::true_type()); return *this; } #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) unordered_map& operator=(unordered_map&& x) BOOST_NOEXCEPT_IF(value_allocator_traits::is_always_equal::value&& boost::is_nothrow_move_assignable<H>::value&& boost::is_nothrow_move_assignable<P>::value) { table_.move_assign(x.table_, boost::unordered::detail::true_type()); return *this; } #endif #endif #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) unordered_map& operator=(std::initializer_list<value_type>); #endif allocator_type get_allocator() const BOOST_NOEXCEPT { return table_.node_alloc(); } // iterators iterator begin() BOOST_NOEXCEPT { return iterator(table_.begin()); } const_iterator begin() const BOOST_NOEXCEPT { return const_iterator(table_.begin()); } iterator end() BOOST_NOEXCEPT { return iterator(); } const_iterator end() const BOOST_NOEXCEPT { return const_iterator(); } const_iterator cbegin() const BOOST_NOEXCEPT { return const_iterator(table_.begin()); } const_iterator cend() const BOOST_NOEXCEPT { return const_iterator(); } // size and capacity bool empty() const BOOST_NOEXCEPT { return table_.size_ == 0; } size_type size() const BOOST_NOEXCEPT { return table_.size_; } size_type max_size() const BOOST_NOEXCEPT; // emplace #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template <class... Args> std::pair<iterator, bool> emplace(BOOST_FWD_REF(Args)... args) { return table_.emplace_unique( table::extractor::extract(boost::forward<Args>(args)...), boost::forward<Args>(args)...); } #else #if !BOOST_UNORDERED_SUN_WORKAROUNDS1 // 0 argument emplace requires special treatment in case // the container is instantiated with a value type that // doesn't have a default constructor. std::pair<iterator, bool> emplace( boost::unordered::detail::empty_emplace = boost::unordered::detail::empty_emplace(), value_type v = value_type()) { return this->emplace(boost::move(v)); } #endif template <typename A0> std::pair<iterator, bool> emplace(BOOST_FWD_REF(A0) a0) { return table_.emplace_unique( table::extractor::extract(boost::forward<A0>(a0)), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0))); } template <typename A0, typename A1> std::pair<iterator, bool> emplace( BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1) { return table_.emplace_unique( table::extractor::extract( boost::forward<A0>(a0), boost::forward<A1>(a1)), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1))); } template <typename A0, typename A1, typename A2> std::pair<iterator, bool> emplace( BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2) { return table_.emplace_unique( table::extractor::extract( boost::forward<A0>(a0), boost::forward<A1>(a1)), boost::unordered::detail::create_emplace_args(boost::forward<A0>(a0), boost::forward<A1>(a1), boost::forward<A2>(a2))); } #endif #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template <class... Args> iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(Args)... args) { return table_.emplace_hint_unique(hint, table::extractor::extract(boost::forward<Args>(args)...), boost::forward<Args>(args)...); } #else #if !BOOST_UNORDERED_SUN_WORKAROUNDS1 iterator emplace_hint(const_iterator hint, boost::unordered::detail::empty_emplace = boost::unordered::detail::empty_emplace(), value_type v = value_type()) { return this->emplace_hint(hint, boost::move(v)); } #endif template <typename A0> iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(A0) a0) { return table_.emplace_hint_unique(hint, table::extractor::extract(boost::forward<A0>(a0)), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0))); } template <typename A0, typename A1> iterator emplace_hint( const_iterator hint, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1) { return table_.emplace_hint_unique(hint, table::extractor::extract( boost::forward<A0>(a0), boost::forward<A1>(a1)), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1))); } template <typename A0, typename A1, typename A2> iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2) { return table_.emplace_hint_unique(hint, table::extractor::extract( boost::forward<A0>(a0), boost::forward<A1>(a1)), boost::unordered::detail::create_emplace_args(boost::forward<A0>(a0), boost::forward<A1>(a1), boost::forward<A2>(a2))); } #endif #if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #define BOOST_UNORDERED_EMPLACE(z, n, _) \ template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \ std::pair<iterator, bool> emplace( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \ { \ return table_.emplace_unique( \ table::extractor::extract( \ boost::forward<A0>(a0), boost::forward<A1>(a1)), \ boost::unordered::detail::create_emplace_args( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))); \ } \ \ template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \ iterator emplace_hint( \ const_iterator hint, BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \ { \ return table_.emplace_hint_unique(hint, \ table::extractor::extract( \ boost::forward<A0>(a0), boost::forward<A1>(a1)), \ boost::unordered::detail::create_emplace_args( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))); \ } BOOST_UNORDERED_EMPLACE(1, 4, _) BOOST_UNORDERED_EMPLACE(1, 5, _) BOOST_UNORDERED_EMPLACE(1, 6, _) BOOST_UNORDERED_EMPLACE(1, 7, _) BOOST_UNORDERED_EMPLACE(1, 8, _) BOOST_UNORDERED_EMPLACE(1, 9, _) BOOST_PP_REPEAT_FROM_TO(10, BOOST_PP_INC(BOOST_UNORDERED_EMPLACE_LIMIT), BOOST_UNORDERED_EMPLACE, _) #undef BOOST_UNORDERED_EMPLACE #endif std::pair<iterator, bool> insert(value_type const& x) { return this->emplace(x); } std::pair<iterator, bool> insert(BOOST_RV_REF(value_type) x) { return this->emplace(boost::move(x)); } template <class P2> std::pair<iterator, bool> insert(BOOST_RV_REF(P2) obj, typename boost::enable_if_c< boost::is_constructible<value_type, BOOST_RV_REF(P2)>::value, void*>::type = 0) { return this->emplace(boost::forward<P2>(obj)); } iterator insert(const_iterator hint, value_type const& x) { return this->emplace_hint(hint, x); } iterator insert(const_iterator hint, BOOST_RV_REF(value_type) x) { return this->emplace_hint(hint, boost::move(x)); } template <class P2> iterator insert(const_iterator hint, BOOST_RV_REF(P2) obj, typename boost::enable_if_c< boost::is_constructible<value_type, BOOST_RV_REF(P2)>::value, void*>::type = 0) { return this->emplace_hint(hint, boost::forward<P2>(obj)); } template <class InputIt> void insert(InputIt, InputIt); #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) void insert(std::initializer_list<value_type>); #endif // extract node_type extract(const_iterator position) { return node_type( table_.extract_by_iterator_unique(position), table_.node_alloc()); } node_type extract(const key_type& k) { return node_type(table_.extract_by_key(k), table_.node_alloc()); } insert_return_type insert(BOOST_RV_REF(node_type) np) { insert_return_type result; table_.move_insert_node_type_unique(np, result); return boost::move(result); } iterator insert(const_iterator hint, BOOST_RV_REF(node_type) np) { return table_.move_insert_node_type_with_hint_unique(hint, np); } #if defined(BOOST_NO_CXX11_RVALUE_REFERENCES) || \ (BOOST_COMP_GNUC && BOOST_COMP_GNUC < BOOST_VERSION_NUMBER(4, 6, 0)) private: // Note: Use r-value node_type to insert. insert_return_type insert(node_type&); iterator insert(const_iterator, node_type& np); public: #endif #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template <class... Args> std::pair<iterator, bool> try_emplace( key_type const& k, BOOST_FWD_REF(Args)... args) { return table_.try_emplace_unique(k, boost::forward<Args>(args)...); } template <class... Args> std::pair<iterator, bool> try_emplace( BOOST_RV_REF(key_type) k, BOOST_FWD_REF(Args)... args) { return table_.try_emplace_unique( boost::move(k), boost::forward<Args>(args)...); } template <class... Args> iterator try_emplace( const_iterator hint, key_type const& k, BOOST_FWD_REF(Args)... args) { return table_.try_emplace_hint_unique( hint, k, boost::forward<Args>(args)...); } template <class... Args> iterator try_emplace(const_iterator hint, BOOST_RV_REF(key_type) k, BOOST_FWD_REF(Args)... args) { return table_.try_emplace_hint_unique( hint, boost::move(k), boost::forward<Args>(args)...); } #else // In order to make this a template, this handles both: // try_emplace(key const&) // try_emplace(key&&) template <typename Key> std::pair<iterator, bool> try_emplace(BOOST_FWD_REF(Key) k) { return table_.try_emplace_unique(boost::forward<Key>(k)); } // In order to make this a template, this handles both: // try_emplace(const_iterator hint, key const&) // try_emplace(const_iterator hint, key&&) template <typename Key> iterator try_emplace(const_iterator hint, BOOST_FWD_REF(Key) k) { return table_.try_emplace_hint_unique(hint, boost::forward<Key>(k)); } // try_emplace(key const&, Args&&...) template <typename A0> std::pair<iterator, bool> try_emplace( key_type const& k, BOOST_FWD_REF(A0) a0) { return table_.try_emplace_unique( k, boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0))); } template <typename A0, typename A1> std::pair<iterator, bool> try_emplace( key_type const& k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1) { return table_.try_emplace_unique( k, boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1))); } template <typename A0, typename A1, typename A2> std::pair<iterator, bool> try_emplace(key_type const& k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2) { return table_.try_emplace_unique(k, boost::unordered::detail::create_emplace_args(boost::forward<A0>(a0), boost::forward<A1>(a1), boost::forward<A2>(a2))); } // try_emplace(key&&, Args&&...) template <typename A0> std::pair<iterator, bool> try_emplace( BOOST_RV_REF(key_type) k, BOOST_FWD_REF(A0) a0) { return table_.try_emplace_unique( boost::move(k), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0))); } template <typename A0, typename A1> std::pair<iterator, bool> try_emplace( BOOST_RV_REF(key_type) k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1) { return table_.try_emplace_unique( boost::move(k), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1))); } template <typename A0, typename A1, typename A2> std::pair<iterator, bool> try_emplace(BOOST_RV_REF(key_type) k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2) { return table_.try_emplace_unique(boost::move(k), boost::unordered::detail::create_emplace_args(boost::forward<A0>(a0), boost::forward<A1>(a1), boost::forward<A2>(a2))); } // try_emplace(const_iterator hint, key const&, Args&&...) template <typename A0> iterator try_emplace( const_iterator hint, key_type const& k, BOOST_FWD_REF(A0) a0) { return table_.try_emplace_hint_unique( hint, k, boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0))); } template <typename A0, typename A1> iterator try_emplace(const_iterator hint, key_type const& k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1) { return table_.try_emplace_hint_unique( hint, k, boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1))); } template <typename A0, typename A1, typename A2> iterator try_emplace(const_iterator hint, key_type const& k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2) { return table_.try_emplace_hint_unique(hint, k, boost::unordered::detail::create_emplace_args(boost::forward<A0>(a0), boost::forward<A1>(a1), boost::forward<A2>(a2))); } // try_emplace(const_iterator hint, key&&, Args&&...) template <typename A0> iterator try_emplace( const_iterator hint, BOOST_RV_REF(key_type) k, BOOST_FWD_REF(A0) a0) { return table_.try_emplace_hint_unique( hint, boost::move(k), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0))); } template <typename A0, typename A1> iterator try_emplace(const_iterator hint, BOOST_RV_REF(key_type) k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1) { return table_.try_emplace_hint_unique(hint, boost::move(k), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1))); } template <typename A0, typename A1, typename A2> iterator try_emplace(const_iterator hint, BOOST_RV_REF(key_type) k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2) { return table_.try_emplace_hint_unique(hint, boost::move(k), boost::unordered::detail::create_emplace_args(boost::forward<A0>(a0), boost::forward<A1>(a1), boost::forward<A2>(a2))); } #define BOOST_UNORDERED_TRY_EMPLACE(z, n, _) \ \ template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \ std::pair<iterator, bool> try_emplace( \ key_type const& k, BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \ { \ return table_.try_emplace_unique( \ k, boost::unordered::detail::create_emplace_args( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))); \ } \ \ template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \ std::pair<iterator, bool> try_emplace(BOOST_RV_REF(key_type) k, \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \ { \ return table_.try_emplace_unique(boost::move(k), \ boost::unordered::detail::create_emplace_args( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))); \ } \ \ template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \ iterator try_emplace(const_iterator hint, key_type const& k, \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \ { \ return table_.try_emplace_hint_unique( \ hint, k, boost::unordered::detail::create_emplace_args( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))); \ } \ \ template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \ iterator try_emplace(const_iterator hint, BOOST_RV_REF(key_type) k, \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \ { \ return table_.try_emplace_hint_unique(hint, boost::move(k), \ boost::unordered::detail::create_emplace_args( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))); \ } BOOST_UNORDERED_TRY_EMPLACE(1, 4, _) BOOST_UNORDERED_TRY_EMPLACE(1, 5, _) BOOST_UNORDERED_TRY_EMPLACE(1, 6, _) BOOST_UNORDERED_TRY_EMPLACE(1, 7, _) BOOST_UNORDERED_TRY_EMPLACE(1, 8, _) BOOST_UNORDERED_TRY_EMPLACE(1, 9, _) BOOST_PP_REPEAT_FROM_TO(10, BOOST_PP_INC(BOOST_UNORDERED_EMPLACE_LIMIT), BOOST_UNORDERED_TRY_EMPLACE, _) #undef BOOST_UNORDERED_TRY_EMPLACE #endif template <class M> std::pair<iterator, bool> insert_or_assign( key_type const& k, BOOST_FWD_REF(M) obj) { return table_.insert_or_assign_unique(k, boost::forward<M>(obj)); } template <class M> std::pair<iterator, bool> insert_or_assign( BOOST_RV_REF(key_type) k, BOOST_FWD_REF(M) obj) { return table_.insert_or_assign_unique( boost::move(k), boost::forward<M>(obj)); } template <class M> iterator insert_or_assign( const_iterator, key_type const& k, BOOST_FWD_REF(M) obj) { return table_.insert_or_assign_unique(k, boost::forward<M>(obj)).first; } template <class M> iterator insert_or_assign( const_iterator, BOOST_RV_REF(key_type) k, BOOST_FWD_REF(M) obj) { return table_ .insert_or_assign_unique(boost::move(k), boost::forward<M>(obj)) .first; } iterator erase(iterator); iterator erase(const_iterator); size_type erase(const key_type&); iterator erase(const_iterator, const_iterator); BOOST_UNORDERED_DEPRECATED("Use erase instead") void quick_erase(const_iterator it) { erase(it); } BOOST_UNORDERED_DEPRECATED("Use erase instead") void erase_return_void(const_iterator it) { erase(it); } void swap(unordered_map&) BOOST_NOEXCEPT_IF(value_allocator_traits::is_always_equal::value&& boost::is_nothrow_swappable<H>::value&& boost::is_nothrow_swappable<P>::value); void clear() BOOST_NOEXCEPT { table_.clear_impl(); } template <typename H2, typename P2> void merge(boost::unordered_map<K, T, H2, P2, A>& source); #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) template <typename H2, typename P2> void merge(boost::unordered_map<K, T, H2, P2, A>&& source); #endif template <typename H2, typename P2> void merge(boost::unordered_multimap<K, T, H2, P2, A>& source); #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) template <typename H2, typename P2> void merge(boost::unordered_multimap<K, T, H2, P2, A>&& source); #endif // observers hasher hash_function() const; key_equal key_eq() const; // lookup iterator find(const key_type&); const_iterator find(const key_type&) const; template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> iterator find(CompatibleKey const&, CompatibleHash const&, CompatiblePredicate const&); template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> const_iterator find(CompatibleKey const&, CompatibleHash const&, CompatiblePredicate const&) const; size_type count(const key_type&) const; std::pair<iterator, iterator> equal_range(const key_type&); std::pair<const_iterator, const_iterator> equal_range( const key_type&) const; mapped_type& operator[](const key_type&); mapped_type& operator[](BOOST_RV_REF(key_type)); mapped_type& at(const key_type&); mapped_type const& at(const key_type&) const; // bucket interface size_type bucket_count() const BOOST_NOEXCEPT { return table_.bucket_count_; } size_type max_bucket_count() const BOOST_NOEXCEPT { return table_.max_bucket_count(); } size_type bucket_size(size_type) const; size_type bucket(const key_type& k) const { return table_.hash_to_bucket(table_.hash(k)); } local_iterator begin(size_type n) { return local_iterator(table_.begin(n), n, table_.bucket_count_); } const_local_iterator begin(size_type n) const { return const_local_iterator(table_.begin(n), n, table_.bucket_count_); } local_iterator end(size_type) { return local_iterator(); } const_local_iterator end(size_type) const { return const_local_iterator(); } const_local_iterator cbegin(size_type n) const { return const_local_iterator(table_.begin(n), n, table_.bucket_count_); } const_local_iterator cend(size_type) const { return const_local_iterator(); } // hash policy float load_factor() const BOOST_NOEXCEPT; float max_load_factor() const BOOST_NOEXCEPT { return table_.mlf_; } void max_load_factor(float) BOOST_NOEXCEPT; void rehash(size_type); void reserve(size_type); #if !BOOST_WORKAROUND(__BORLANDC__, < 0x0582) friend bool operator== <K, T, H, P, A>(unordered_map const&, unordered_map const&); friend bool operator!= <K, T, H, P, A>(unordered_map const&, unordered_map const&); #endif }; // class template unordered_map #if BOOST_UNORDERED_TEMPLATE_DEDUCTION_GUIDES namespace detail { template <typename T> using iter_key_t = typename std::iterator_traits<T>::value_type::first_type; template <typename T> using iter_val_t = typename std::iterator_traits<T>::value_type::second_type; template <typename T> using iter_to_alloc_t = typename std::pair<iter_key_t<T> const, iter_val_t<T> >; } template <class InputIterator, class Hash = boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >, class Pred = std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, class Allocator = std::allocator< boost::unordered::detail::iter_to_alloc_t<InputIterator> > > unordered_map(InputIterator, InputIterator, std::size_t = boost::unordered::detail::default_bucket_count, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) ->unordered_map<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, Hash, Pred, Allocator>; template <class Key, class T, class Hash = boost::hash<Key>, class Pred = std::equal_to<Key>, class Allocator = std::allocator<std::pair<const Key, T> > > unordered_map(std::initializer_list<std::pair<const Key, T> >, std::size_t = boost::unordered::detail::default_bucket_count, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) ->unordered_map<Key, T, Hash, Pred, Allocator>; template <class InputIterator, class Allocator> unordered_map(InputIterator, InputIterator, std::size_t, Allocator) ->unordered_map<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >, std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, Allocator>; template <class InputIterator, class Allocator> unordered_map(InputIterator, InputIterator, Allocator) ->unordered_map<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >, std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, Allocator>; template <class InputIterator, class Hash, class Allocator> unordered_map(InputIterator, InputIterator, std::size_t, Hash, Allocator) ->unordered_map<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, Hash, std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, Allocator>; template <class Key, class T, typename Allocator> unordered_map( std::initializer_list<std::pair<const Key, T> >, std::size_t, Allocator) ->unordered_map<Key, T, boost::hash<Key>, std::equal_to<Key>, Allocator>; template <class Key, class T, typename Allocator> unordered_map(std::initializer_list<std::pair<const Key, T> >, Allocator) ->unordered_map<Key, T, boost::hash<Key>, std::equal_to<Key>, Allocator>; template <class Key, class T, class Hash, class Allocator> unordered_map(std::initializer_list<std::pair<const Key, T> >, std::size_t, Hash, Allocator) ->unordered_map<Key, T, Hash, std::equal_to<Key>, Allocator>; #endif template <class K, class T, class H, class P, class A> class unordered_multimap { #if defined(BOOST_UNORDERED_USE_MOVE) BOOST_COPYABLE_AND_MOVABLE(unordered_multimap) #endif template <typename, typename, typename, typename, typename> friend class unordered_map; public: typedef K key_type; typedef T mapped_type; typedef std::pair<const K, T> value_type; typedef H hasher; typedef P key_equal; typedef A allocator_type; private: typedef boost::unordered::detail::map<A, K, T, H, P> types; typedef typename types::value_allocator_traits value_allocator_traits; typedef typename types::table table; typedef typename table::node_pointer node_pointer; typedef typename table::link_pointer link_pointer; public: typedef typename value_allocator_traits::pointer pointer; typedef typename value_allocator_traits::const_pointer const_pointer; typedef value_type& reference; typedef value_type const& const_reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef typename table::iterator iterator; typedef typename table::c_iterator const_iterator; typedef typename table::l_iterator local_iterator; typedef typename table::cl_iterator const_local_iterator; typedef typename types::node_type node_type; private: table table_; public: // constructors unordered_multimap(); explicit unordered_multimap(size_type, const hasher& = hasher(), const key_equal& = key_equal(), const allocator_type& = allocator_type()); template <class InputIt> unordered_multimap(InputIt, InputIt, size_type = boost::unordered::detail::default_bucket_count, const hasher& = hasher(), const key_equal& = key_equal(), const allocator_type& = allocator_type()); unordered_multimap(unordered_multimap const&); #if defined(BOOST_UNORDERED_USE_MOVE) || \ !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) unordered_multimap(BOOST_RV_REF(unordered_multimap) other) BOOST_NOEXCEPT_IF(table::nothrow_move_constructible) : table_(other.table_, boost::unordered::detail::move_tag()) { // The move is done in table_ } #endif explicit unordered_multimap(allocator_type const&); unordered_multimap(unordered_multimap const&, allocator_type const&); unordered_multimap( BOOST_RV_REF(unordered_multimap), allocator_type const&); #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) unordered_multimap(std::initializer_list<value_type>, size_type = boost::unordered::detail::default_bucket_count, const hasher& = hasher(), const key_equal& l = key_equal(), const allocator_type& = allocator_type()); #endif explicit unordered_multimap(size_type, const allocator_type&); explicit unordered_multimap( size_type, const hasher&, const allocator_type&); template <class InputIt> unordered_multimap(InputIt, InputIt, size_type, const allocator_type&); template <class InputIt> unordered_multimap( InputIt, InputIt, size_type, const hasher&, const allocator_type&); #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) unordered_multimap( std::initializer_list<value_type>, size_type, const allocator_type&); unordered_multimap(std::initializer_list<value_type>, size_type, const hasher&, const allocator_type&); #endif // Destructor ~unordered_multimap() BOOST_NOEXCEPT; // Assign #if defined(BOOST_UNORDERED_USE_MOVE) unordered_multimap& operator=(BOOST_COPY_ASSIGN_REF(unordered_multimap) x) { table_.assign(x.table_, boost::unordered::detail::false_type()); return *this; } unordered_multimap& operator=(BOOST_RV_REF(unordered_multimap) x) BOOST_NOEXCEPT_IF(value_allocator_traits::is_always_equal::value&& boost::is_nothrow_move_assignable<H>::value&& boost::is_nothrow_move_assignable<P>::value) { table_.move_assign(x.table_, boost::unordered::detail::false_type()); return *this; } #else unordered_multimap& operator=(unordered_multimap const& x) { table_.assign(x.table_, boost::unordered::detail::false_type()); return *this; } #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) unordered_multimap& operator=(unordered_multimap&& x) BOOST_NOEXCEPT_IF(value_allocator_traits::is_always_equal::value&& boost::is_nothrow_move_assignable<H>::value&& boost::is_nothrow_move_assignable<P>::value) { table_.move_assign(x.table_, boost::unordered::detail::false_type()); return *this; } #endif #endif #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) unordered_multimap& operator=(std::initializer_list<value_type>); #endif allocator_type get_allocator() const BOOST_NOEXCEPT { return table_.node_alloc(); } // iterators iterator begin() BOOST_NOEXCEPT { return iterator(table_.begin()); } const_iterator begin() const BOOST_NOEXCEPT { return const_iterator(table_.begin()); } iterator end() BOOST_NOEXCEPT { return iterator(); } const_iterator end() const BOOST_NOEXCEPT { return const_iterator(); } const_iterator cbegin() const BOOST_NOEXCEPT { return const_iterator(table_.begin()); } const_iterator cend() const BOOST_NOEXCEPT { return const_iterator(); } // size and capacity bool empty() const BOOST_NOEXCEPT { return table_.size_ == 0; } size_type size() const BOOST_NOEXCEPT { return table_.size_; } size_type max_size() const BOOST_NOEXCEPT; // emplace #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template <class... Args> iterator emplace(BOOST_FWD_REF(Args)... args) { return iterator(table_.emplace_equiv( boost::unordered::detail::func::construct_node_from_args( table_.node_alloc(), boost::forward<Args>(args)...))); } #else #if !BOOST_UNORDERED_SUN_WORKAROUNDS1 // 0 argument emplace requires special treatment in case // the container is instantiated with a value type that // doesn't have a default constructor. iterator emplace(boost::unordered::detail::empty_emplace = boost::unordered::detail::empty_emplace(), value_type v = value_type()) { return this->emplace(boost::move(v)); } #endif template <typename A0> iterator emplace(BOOST_FWD_REF(A0) a0) { return iterator(table_.emplace_equiv( boost::unordered::detail::func::construct_node_from_args( table_.node_alloc(), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0))))); } template <typename A0, typename A1> iterator emplace(BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1) { return iterator(table_.emplace_equiv( boost::unordered::detail::func::construct_node_from_args( table_.node_alloc(), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1))))); } template <typename A0, typename A1, typename A2> iterator emplace( BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2) { return iterator(table_.emplace_equiv( boost::unordered::detail::func::construct_node_from_args( table_.node_alloc(), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1), boost::forward<A2>(a2))))); } #endif #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template <class... Args> iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(Args)... args) { return iterator(table_.emplace_hint_equiv( hint, boost::unordered::detail::func::construct_node_from_args( table_.node_alloc(), boost::forward<Args>(args)...))); } #else #if !BOOST_UNORDERED_SUN_WORKAROUNDS1 iterator emplace_hint(const_iterator hint, boost::unordered::detail::empty_emplace = boost::unordered::detail::empty_emplace(), value_type v = value_type()) { return this->emplace_hint(hint, boost::move(v)); } #endif template <typename A0> iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(A0) a0) { return iterator(table_.emplace_hint_equiv(hint, boost::unordered::detail::func::construct_node_from_args( table_.node_alloc(), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0))))); } template <typename A0, typename A1> iterator emplace_hint( const_iterator hint, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1) { return iterator(table_.emplace_hint_equiv( hint, boost::unordered::detail::func::construct_node_from_args( table_.node_alloc(), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1))))); } template <typename A0, typename A1, typename A2> iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2) { return iterator(table_.emplace_hint_equiv( hint, boost::unordered::detail::func::construct_node_from_args( table_.node_alloc(), boost::unordered::detail::create_emplace_args( boost::forward<A0>(a0), boost::forward<A1>(a1), boost::forward<A2>(a2))))); } #endif #if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #define BOOST_UNORDERED_EMPLACE(z, n, _) \ template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \ iterator emplace(BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \ { \ return iterator(table_.emplace_equiv( \ boost::unordered::detail::func::construct_node_from_args( \ table_.node_alloc(), \ boost::unordered::detail::create_emplace_args( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))))); \ } \ \ template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \ iterator emplace_hint( \ const_iterator hint, BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \ { \ return iterator(table_.emplace_hint_equiv( \ hint, boost::unordered::detail::func::construct_node_from_args( \ table_.node_alloc(), \ boost::unordered::detail::create_emplace_args( \ BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))))); \ } BOOST_UNORDERED_EMPLACE(1, 4, _) BOOST_UNORDERED_EMPLACE(1, 5, _) BOOST_UNORDERED_EMPLACE(1, 6, _) BOOST_UNORDERED_EMPLACE(1, 7, _) BOOST_UNORDERED_EMPLACE(1, 8, _) BOOST_UNORDERED_EMPLACE(1, 9, _) BOOST_PP_REPEAT_FROM_TO(10, BOOST_PP_INC(BOOST_UNORDERED_EMPLACE_LIMIT), BOOST_UNORDERED_EMPLACE, _) #undef BOOST_UNORDERED_EMPLACE #endif iterator insert(value_type const& x) { return this->emplace(x); } iterator insert(BOOST_RV_REF(value_type) x) { return this->emplace(boost::move(x)); } template <class P2> iterator insert(BOOST_RV_REF(P2) obj, typename boost::enable_if_c< boost::is_constructible<value_type, BOOST_RV_REF(P2)>::value, void*>::type = 0) { return this->emplace(boost::forward<P2>(obj)); } iterator insert(const_iterator hint, value_type const& x) { return this->emplace_hint(hint, x); } iterator insert(const_iterator hint, BOOST_RV_REF(value_type) x) { return this->emplace_hint(hint, boost::move(x)); } template <class P2> iterator insert(const_iterator hint, BOOST_RV_REF(P2) obj, typename boost::enable_if_c< boost::is_constructible<value_type, BOOST_RV_REF(P2)>::value, void*>::type = 0) { return this->emplace_hint(hint, boost::forward<P2>(obj)); } template <class InputIt> void insert(InputIt, InputIt); #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) void insert(std::initializer_list<value_type>); #endif // extract node_type extract(const_iterator position) { return node_type( table_.extract_by_iterator_equiv(position), table_.node_alloc()); } node_type extract(const key_type& k) { return node_type(table_.extract_by_key(k), table_.node_alloc()); } iterator insert(BOOST_RV_REF(node_type) np) { return table_.move_insert_node_type_equiv(np); } iterator insert(const_iterator hint, BOOST_RV_REF(node_type) np) { return table_.move_insert_node_type_with_hint_equiv(hint, np); } #if defined(BOOST_NO_CXX11_RVALUE_REFERENCES) || \ (BOOST_COMP_GNUC && BOOST_COMP_GNUC < BOOST_VERSION_NUMBER(4, 6, 0)) private: // Note: Use r-value node_type to insert. iterator insert(node_type&); iterator insert(const_iterator, node_type& np); public: #endif iterator erase(iterator); iterator erase(const_iterator); size_type erase(const key_type&); iterator erase(const_iterator, const_iterator); BOOST_UNORDERED_DEPRECATED("Use erase instead") void quick_erase(const_iterator it) { erase(it); } BOOST_UNORDERED_DEPRECATED("Use erase instead") void erase_return_void(const_iterator it) { erase(it); } void swap(unordered_multimap&) BOOST_NOEXCEPT_IF(value_allocator_traits::is_always_equal::value&& boost::is_nothrow_swappable<H>::value&& boost::is_nothrow_swappable<P>::value); void clear() BOOST_NOEXCEPT { table_.clear_impl(); } template <typename H2, typename P2> void merge(boost::unordered_multimap<K, T, H2, P2, A>& source); #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) template <typename H2, typename P2> void merge(boost::unordered_multimap<K, T, H2, P2, A>&& source); #endif template <typename H2, typename P2> void merge(boost::unordered_map<K, T, H2, P2, A>& source); #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) template <typename H2, typename P2> void merge(boost::unordered_map<K, T, H2, P2, A>&& source); #endif // observers hasher hash_function() const; key_equal key_eq() const; // lookup iterator find(const key_type&); const_iterator find(const key_type&) const; template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> iterator find(CompatibleKey const&, CompatibleHash const&, CompatiblePredicate const&); template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> const_iterator find(CompatibleKey const&, CompatibleHash const&, CompatiblePredicate const&) const; size_type count(const key_type&) const; std::pair<iterator, iterator> equal_range(const key_type&); std::pair<const_iterator, const_iterator> equal_range( const key_type&) const; // bucket interface size_type bucket_count() const BOOST_NOEXCEPT { return table_.bucket_count_; } size_type max_bucket_count() const BOOST_NOEXCEPT { return table_.max_bucket_count(); } size_type bucket_size(size_type) const; size_type bucket(const key_type& k) const { return table_.hash_to_bucket(table_.hash(k)); } local_iterator begin(size_type n) { return local_iterator(table_.begin(n), n, table_.bucket_count_); } const_local_iterator begin(size_type n) const { return const_local_iterator(table_.begin(n), n, table_.bucket_count_); } local_iterator end(size_type) { return local_iterator(); } const_local_iterator end(size_type) const { return const_local_iterator(); } const_local_iterator cbegin(size_type n) const { return const_local_iterator(table_.begin(n), n, table_.bucket_count_); } const_local_iterator cend(size_type) const { return const_local_iterator(); } // hash policy float load_factor() const BOOST_NOEXCEPT; float max_load_factor() const BOOST_NOEXCEPT { return table_.mlf_; } void max_load_factor(float) BOOST_NOEXCEPT; void rehash(size_type); void reserve(size_type); #if !BOOST_WORKAROUND(__BORLANDC__, < 0x0582) friend bool operator== <K, T, H, P, A>(unordered_multimap const&, unordered_multimap const&); friend bool operator!= <K, T, H, P, A>(unordered_multimap const&, unordered_multimap const&); #endif }; // class template unordered_multimap #if BOOST_UNORDERED_TEMPLATE_DEDUCTION_GUIDES template <class InputIterator, class Hash = boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >, class Pred = std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, class Allocator = std::allocator< boost::unordered::detail::iter_to_alloc_t<InputIterator> > > unordered_multimap(InputIterator, InputIterator, std::size_t = boost::unordered::detail::default_bucket_count, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) ->unordered_multimap<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, Hash, Pred, Allocator>; template <class Key, class T, class Hash = boost::hash<Key>, class Pred = std::equal_to<Key>, class Allocator = std::allocator<std::pair<const Key, T> > > unordered_multimap(std::initializer_list<std::pair<const Key, T> >, std::size_t = boost::unordered::detail::default_bucket_count, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) ->unordered_multimap<Key, T, Hash, Pred, Allocator>; template <class InputIterator, class Allocator> unordered_multimap(InputIterator, InputIterator, std::size_t, Allocator) ->unordered_multimap<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >, std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, Allocator>; template <class InputIterator, class Allocator> unordered_multimap(InputIterator, InputIterator, Allocator) ->unordered_multimap<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >, std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, Allocator>; template <class InputIterator, class Hash, class Allocator> unordered_multimap( InputIterator, InputIterator, std::size_t, Hash, Allocator) ->unordered_multimap<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, Hash, std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, Allocator>; template <class Key, class T, typename Allocator> unordered_multimap( std::initializer_list<std::pair<const Key, T> >, std::size_t, Allocator) ->unordered_multimap<Key, T, boost::hash<Key>, std::equal_to<Key>, Allocator>; template <class Key, class T, typename Allocator> unordered_multimap( std::initializer_list<std::pair<const Key, T> >, Allocator) ->unordered_multimap<Key, T, boost::hash<Key>, std::equal_to<Key>, Allocator>; template <class Key, class T, class Hash, class Allocator> unordered_multimap(std::initializer_list<std::pair<const Key, T> >, std::size_t, Hash, Allocator) ->unordered_multimap<Key, T, Hash, std::equal_to<Key>, Allocator>; #endif //////////////////////////////////////////////////////////////////////////// template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map() : table_(boost::unordered::detail::default_bucket_count, hasher(), key_equal(), allocator_type()) { } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map(size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : table_(n, hf, eql, a) { } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_map<K, T, H, P, A>::unordered_map(InputIt f, InputIt l, size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a) { this->insert(f, l); } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map(unordered_map const& other) : table_(other.table_, unordered_map::value_allocator_traits:: select_on_container_copy_construction(other.get_allocator())) { if (other.table_.size_) { table_.copy_buckets( other.table_, boost::unordered::detail::true_type()); } } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map(allocator_type const& a) : table_(boost::unordered::detail::default_bucket_count, hasher(), key_equal(), a) { } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( unordered_map const& other, allocator_type const& a) : table_(other.table_, a) { if (other.table_.size_) { table_.copy_buckets( other.table_, boost::unordered::detail::true_type()); } } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( BOOST_RV_REF(unordered_map) other, allocator_type const& a) : table_(other.table_, a, boost::unordered::detail::move_tag()) { table_.move_construct_buckets(other.table_); } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( std::initializer_list<value_type> list, size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : table_( boost::unordered::detail::initial_size(list.begin(), list.end(), n), hf, eql, a) { this->insert(list.begin(), list.end()); } #endif template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( size_type n, const allocator_type& a) : table_(n, hasher(), key_equal(), a) { } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( size_type n, const hasher& hf, const allocator_type& a) : table_(n, hf, key_equal(), a) { } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_map<K, T, H, P, A>::unordered_map( InputIt f, InputIt l, size_type n, const allocator_type& a) : table_(boost::unordered::detail::initial_size(f, l, n), hasher(), key_equal(), a) { this->insert(f, l); } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_map<K, T, H, P, A>::unordered_map(InputIt f, InputIt l, size_type n, const hasher& hf, const allocator_type& a) : table_( boost::unordered::detail::initial_size(f, l, n), hf, key_equal(), a) { this->insert(f, l); } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( std::initializer_list<value_type> list, size_type n, const allocator_type& a) : table_( boost::unordered::detail::initial_size(list.begin(), list.end(), n), hasher(), key_equal(), a) { this->insert(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( std::initializer_list<value_type> list, size_type n, const hasher& hf, const allocator_type& a) : table_( boost::unordered::detail::initial_size(list.begin(), list.end(), n), hf, key_equal(), a) { this->insert(list.begin(), list.end()); } #endif template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::~unordered_map() BOOST_NOEXCEPT { } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>& unordered_map<K, T, H, P, A>::operator=( std::initializer_list<value_type> list) { this->clear(); this->insert(list.begin(), list.end()); return *this; } #endif // size and capacity template <class K, class T, class H, class P, class A> std::size_t unordered_map<K, T, H, P, A>::max_size() const BOOST_NOEXCEPT { using namespace std; // size <= mlf_ * count return boost::unordered::detail::double_to_size( ceil(static_cast<double>(table_.mlf_) * static_cast<double>(table_.max_bucket_count()))) - 1; } // modifiers template <class K, class T, class H, class P, class A> template <class InputIt> void unordered_map<K, T, H, P, A>::insert(InputIt first, InputIt last) { if (first != last) { table_.insert_range_unique( table::extractor::extract(*first), first, last); } } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) template <class K, class T, class H, class P, class A> void unordered_map<K, T, H, P, A>::insert( std::initializer_list<value_type> list) { this->insert(list.begin(), list.end()); } #endif template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::iterator unordered_map<K, T, H, P, A>::erase(iterator position) { node_pointer node = table::get_node(position); BOOST_ASSERT(node); node_pointer next = table::next_node(node); table_.erase_nodes_unique(node, next); return iterator(next); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::iterator unordered_map<K, T, H, P, A>::erase(const_iterator position) { node_pointer node = table::get_node(position); BOOST_ASSERT(node); node_pointer next = table::next_node(node); table_.erase_nodes_unique(node, next); return iterator(next); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::size_type unordered_map<K, T, H, P, A>::erase(const key_type& k) { return table_.erase_key_unique(k); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::iterator unordered_map<K, T, H, P, A>::erase( const_iterator first, const_iterator last) { node_pointer last_node = table::get_node(last); if (first == last) return iterator(last_node); table_.erase_nodes_unique(table::get_node(first), last_node); return iterator(last_node); } template <class K, class T, class H, class P, class A> void unordered_map<K, T, H, P, A>::swap(unordered_map& other) BOOST_NOEXCEPT_IF(value_allocator_traits::is_always_equal::value&& boost::is_nothrow_swappable<H>::value&& boost::is_nothrow_swappable<P>::value) { table_.swap(other.table_); } template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_map<K, T, H, P, A>::merge( boost::unordered_map<K, T, H2, P2, A>& source) { table_.merge_unique(source.table_); } #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_map<K, T, H, P, A>::merge( boost::unordered_map<K, T, H2, P2, A>&& source) { table_.merge_unique(source.table_); } #endif template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_map<K, T, H, P, A>::merge( boost::unordered_multimap<K, T, H2, P2, A>& source) { table_.merge_unique(source.table_); } #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_map<K, T, H, P, A>::merge( boost::unordered_multimap<K, T, H2, P2, A>&& source) { table_.merge_unique(source.table_); } #endif // observers template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::hasher unordered_map<K, T, H, P, A>::hash_function() const { return table_.hash_function(); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::key_equal unordered_map<K, T, H, P, A>::key_eq() const { return table_.key_eq(); } // lookup template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::iterator unordered_map<K, T, H, P, A>::find(const key_type& k) { return iterator(table_.find_node(k)); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::const_iterator unordered_map<K, T, H, P, A>::find(const key_type& k) const { return const_iterator(table_.find_node(k)); } template <class K, class T, class H, class P, class A> template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> typename unordered_map<K, T, H, P, A>::iterator unordered_map<K, T, H, P, A>::find(CompatibleKey const& k, CompatibleHash const& hash, CompatiblePredicate const& eq) { return iterator( table_.find_node_impl(table::policy::apply_hash(hash, k), k, eq)); } template <class K, class T, class H, class P, class A> template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> typename unordered_map<K, T, H, P, A>::const_iterator unordered_map<K, T, H, P, A>::find(CompatibleKey const& k, CompatibleHash const& hash, CompatiblePredicate const& eq) const { return const_iterator( table_.find_node_impl(table::policy::apply_hash(hash, k), k, eq)); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::size_type unordered_map<K, T, H, P, A>::count(const key_type& k) const { return table_.find_node(k) ? 1 : 0; } template <class K, class T, class H, class P, class A> std::pair<typename unordered_map<K, T, H, P, A>::iterator, typename unordered_map<K, T, H, P, A>::iterator> unordered_map<K, T, H, P, A>::equal_range(const key_type& k) { node_pointer n = table_.find_node(k); return std::make_pair(iterator(n), iterator(n ? table::next_node(n) : n)); } template <class K, class T, class H, class P, class A> std::pair<typename unordered_map<K, T, H, P, A>::const_iterator, typename unordered_map<K, T, H, P, A>::const_iterator> unordered_map<K, T, H, P, A>::equal_range(const key_type& k) const { node_pointer n = table_.find_node(k); return std::make_pair( const_iterator(n), const_iterator(n ? table::next_node(n) : n)); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::mapped_type& unordered_map<K, T, H, P, A>::operator[](const key_type& k) { return table_.try_emplace_unique(k).first->second; } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::mapped_type& unordered_map<K, T, H, P, A>::operator[](BOOST_RV_REF(key_type) k) { return table_.try_emplace_unique(boost::move(k)).first->second; } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::mapped_type& unordered_map<K, T, H, P, A>::at(const key_type& k) { if (table_.size_) { node_pointer n = table_.find_node(k); if (n) return n->value().second; } boost::throw_exception( std::out_of_range("Unable to find key in unordered_map.")); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::mapped_type const& unordered_map<K, T, H, P, A>::at(const key_type& k) const { if (table_.size_) { node_pointer n = table_.find_node(k); if (n) return n->value().second; } boost::throw_exception( std::out_of_range("Unable to find key in unordered_map.")); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::size_type unordered_map<K, T, H, P, A>::bucket_size(size_type n) const { return table_.bucket_size(n); } // hash policy template <class K, class T, class H, class P, class A> float unordered_map<K, T, H, P, A>::load_factor() const BOOST_NOEXCEPT { BOOST_ASSERT(table_.bucket_count_ != 0); return static_cast<float>(table_.size_) / static_cast<float>(table_.bucket_count_); } template <class K, class T, class H, class P, class A> void unordered_map<K, T, H, P, A>::max_load_factor(float m) BOOST_NOEXCEPT { table_.max_load_factor(m); } template <class K, class T, class H, class P, class A> void unordered_map<K, T, H, P, A>::rehash(size_type n) { table_.rehash(n); } template <class K, class T, class H, class P, class A> void unordered_map<K, T, H, P, A>::reserve(size_type n) { table_.rehash(static_cast<std::size_t>( std::ceil(static_cast<double>(n) / table_.mlf_))); } template <class K, class T, class H, class P, class A> inline bool operator==(unordered_map<K, T, H, P, A> const& m1, unordered_map<K, T, H, P, A> const& m2) { #if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_map<K, T, H, P, A> x; }; #endif return m1.table_.equals_unique(m2.table_); } template <class K, class T, class H, class P, class A> inline bool operator!=(unordered_map<K, T, H, P, A> const& m1, unordered_map<K, T, H, P, A> const& m2) { #if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_map<K, T, H, P, A> x; }; #endif return !m1.table_.equals_unique(m2.table_); } template <class K, class T, class H, class P, class A> inline void swap( unordered_map<K, T, H, P, A>& m1, unordered_map<K, T, H, P, A>& m2) BOOST_NOEXCEPT_IF(BOOST_NOEXCEPT_EXPR(m1.swap(m2))) { #if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_map<K, T, H, P, A> x; }; #endif m1.swap(m2); } //////////////////////////////////////////////////////////////////////////// template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap() : table_(boost::unordered::detail::default_bucket_count, hasher(), key_equal(), allocator_type()) { } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap(size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : table_(n, hf, eql, a) { } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_multimap<K, T, H, P, A>::unordered_multimap(InputIt f, InputIt l, size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a) { this->insert(f, l); } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( unordered_multimap const& other) : table_(other.table_, unordered_multimap::value_allocator_traits:: select_on_container_copy_construction(other.get_allocator())) { if (other.table_.size_) { table_.copy_buckets( other.table_, boost::unordered::detail::false_type()); } } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( allocator_type const& a) : table_(boost::unordered::detail::default_bucket_count, hasher(), key_equal(), a) { } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( unordered_multimap const& other, allocator_type const& a) : table_(other.table_, a) { if (other.table_.size_) { table_.copy_buckets( other.table_, boost::unordered::detail::false_type()); } } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( BOOST_RV_REF(unordered_multimap) other, allocator_type const& a) : table_(other.table_, a, boost::unordered::detail::move_tag()) { table_.move_construct_buckets(other.table_); } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( std::initializer_list<value_type> list, size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : table_( boost::unordered::detail::initial_size(list.begin(), list.end(), n), hf, eql, a) { this->insert(list.begin(), list.end()); } #endif template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( size_type n, const allocator_type& a) : table_(n, hasher(), key_equal(), a) { } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( size_type n, const hasher& hf, const allocator_type& a) : table_(n, hf, key_equal(), a) { } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_multimap<K, T, H, P, A>::unordered_multimap( InputIt f, InputIt l, size_type n, const allocator_type& a) : table_(boost::unordered::detail::initial_size(f, l, n), hasher(), key_equal(), a) { this->insert(f, l); } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_multimap<K, T, H, P, A>::unordered_multimap(InputIt f, InputIt l, size_type n, const hasher& hf, const allocator_type& a) : table_( boost::unordered::detail::initial_size(f, l, n), hf, key_equal(), a) { this->insert(f, l); } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( std::initializer_list<value_type> list, size_type n, const allocator_type& a) : table_( boost::unordered::detail::initial_size(list.begin(), list.end(), n), hasher(), key_equal(), a) { this->insert(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( std::initializer_list<value_type> list, size_type n, const hasher& hf, const allocator_type& a) : table_( boost::unordered::detail::initial_size(list.begin(), list.end(), n), hf, key_equal(), a) { this->insert(list.begin(), list.end()); } #endif template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::~unordered_multimap() BOOST_NOEXCEPT { } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>& unordered_multimap<K, T, H, P, A>:: operator=(std::initializer_list<value_type> list) { this->clear(); this->insert(list.begin(), list.end()); return *this; } #endif // size and capacity template <class K, class T, class H, class P, class A> std::size_t unordered_multimap<K, T, H, P, A>::max_size() const BOOST_NOEXCEPT { using namespace std; // size <= mlf_ * count return boost::unordered::detail::double_to_size( ceil(static_cast<double>(table_.mlf_) * static_cast<double>(table_.max_bucket_count()))) - 1; } // modifiers template <class K, class T, class H, class P, class A> template <class InputIt> void unordered_multimap<K, T, H, P, A>::insert(InputIt first, InputIt last) { table_.insert_range_equiv(first, last); } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) template <class K, class T, class H, class P, class A> void unordered_multimap<K, T, H, P, A>::insert( std::initializer_list<value_type> list) { this->insert(list.begin(), list.end()); } #endif template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::iterator unordered_multimap<K, T, H, P, A>::erase(iterator position) { node_pointer node = table::get_node(position); BOOST_ASSERT(node); node_pointer next = table::next_node(node); table_.erase_nodes_equiv(node, next); return iterator(next); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::iterator unordered_multimap<K, T, H, P, A>::erase(const_iterator position) { node_pointer node = table::get_node(position); BOOST_ASSERT(node); node_pointer next = table::next_node(node); table_.erase_nodes_equiv(node, next); return iterator(next); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::size_type unordered_multimap<K, T, H, P, A>::erase(const key_type& k) { return table_.erase_key_equiv(k); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::iterator unordered_multimap<K, T, H, P, A>::erase( const_iterator first, const_iterator last) { node_pointer last_node = table::get_node(last); if (first == last) return iterator(last_node); table_.erase_nodes_equiv(table::get_node(first), last_node); return iterator(last_node); } template <class K, class T, class H, class P, class A> void unordered_multimap<K, T, H, P, A>::swap(unordered_multimap& other) BOOST_NOEXCEPT_IF(value_allocator_traits::is_always_equal::value&& boost::is_nothrow_swappable<H>::value&& boost::is_nothrow_swappable<P>::value) { table_.swap(other.table_); } // observers template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::hasher unordered_multimap<K, T, H, P, A>::hash_function() const { return table_.hash_function(); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::key_equal unordered_multimap<K, T, H, P, A>::key_eq() const { return table_.key_eq(); } template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_multimap<K, T, H, P, A>::merge( boost::unordered_multimap<K, T, H2, P2, A>& source) { while (!source.empty()) { insert(source.extract(source.begin())); } } #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_multimap<K, T, H, P, A>::merge( boost::unordered_multimap<K, T, H2, P2, A>&& source) { while (!source.empty()) { insert(source.extract(source.begin())); } } #endif template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_multimap<K, T, H, P, A>::merge( boost::unordered_map<K, T, H2, P2, A>& source) { while (!source.empty()) { insert(source.extract(source.begin())); } } #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_multimap<K, T, H, P, A>::merge( boost::unordered_map<K, T, H2, P2, A>&& source) { while (!source.empty()) { insert(source.extract(source.begin())); } } #endif // lookup template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::iterator unordered_multimap<K, T, H, P, A>::find(const key_type& k) { return iterator(table_.find_node(k)); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::const_iterator unordered_multimap<K, T, H, P, A>::find(const key_type& k) const { return const_iterator(table_.find_node(k)); } template <class K, class T, class H, class P, class A> template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> typename unordered_multimap<K, T, H, P, A>::iterator unordered_multimap<K, T, H, P, A>::find(CompatibleKey const& k, CompatibleHash const& hash, CompatiblePredicate const& eq) { return iterator( table_.find_node_impl(table::policy::apply_hash(hash, k), k, eq)); } template <class K, class T, class H, class P, class A> template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> typename unordered_multimap<K, T, H, P, A>::const_iterator unordered_multimap<K, T, H, P, A>::find(CompatibleKey const& k, CompatibleHash const& hash, CompatiblePredicate const& eq) const { return const_iterator( table_.find_node_impl(table::policy::apply_hash(hash, k), k, eq)); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::size_type unordered_multimap<K, T, H, P, A>::count(const key_type& k) const { node_pointer n = table_.find_node(k); return n ? table_.group_count(n) : 0; } template <class K, class T, class H, class P, class A> std::pair<typename unordered_multimap<K, T, H, P, A>::iterator, typename unordered_multimap<K, T, H, P, A>::iterator> unordered_multimap<K, T, H, P, A>::equal_range(const key_type& k) { node_pointer n = table_.find_node(k); return std::make_pair( iterator(n), iterator(n ? table_.next_group(n) : n)); } template <class K, class T, class H, class P, class A> std::pair<typename unordered_multimap<K, T, H, P, A>::const_iterator, typename unordered_multimap<K, T, H, P, A>::const_iterator> unordered_multimap<K, T, H, P, A>::equal_range(const key_type& k) const { node_pointer n = table_.find_node(k); return std::make_pair( const_iterator(n), const_iterator(n ? table_.next_group(n) : n)); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::size_type unordered_multimap<K, T, H, P, A>::bucket_size(size_type n) const { return table_.bucket_size(n); } // hash policy template <class K, class T, class H, class P, class A> float unordered_multimap<K, T, H, P, A>::load_factor() const BOOST_NOEXCEPT { BOOST_ASSERT(table_.bucket_count_ != 0); return static_cast<float>(table_.size_) / static_cast<float>(table_.bucket_count_); } template <class K, class T, class H, class P, class A> void unordered_multimap<K, T, H, P, A>::max_load_factor( float m) BOOST_NOEXCEPT { table_.max_load_factor(m); } template <class K, class T, class H, class P, class A> void unordered_multimap<K, T, H, P, A>::rehash(size_type n) { table_.rehash(n); } template <class K, class T, class H, class P, class A> void unordered_multimap<K, T, H, P, A>::reserve(size_type n) { table_.rehash(static_cast<std::size_t>( std::ceil(static_cast<double>(n) / table_.mlf_))); } template <class K, class T, class H, class P, class A> inline bool operator==(unordered_multimap<K, T, H, P, A> const& m1, unordered_multimap<K, T, H, P, A> const& m2) { #if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_multimap<K, T, H, P, A> x; }; #endif return m1.table_.equals_equiv(m2.table_); } template <class K, class T, class H, class P, class A> inline bool operator!=(unordered_multimap<K, T, H, P, A> const& m1, unordered_multimap<K, T, H, P, A> const& m2) { #if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_multimap<K, T, H, P, A> x; }; #endif return !m1.table_.equals_equiv(m2.table_); } template <class K, class T, class H, class P, class A> inline void swap(unordered_multimap<K, T, H, P, A>& m1, unordered_multimap<K, T, H, P, A>& m2) BOOST_NOEXCEPT_IF(BOOST_NOEXCEPT_EXPR(m1.swap(m2))) { #if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_multimap<K, T, H, P, A> x; }; #endif m1.swap(m2); } template <typename N, class K, class T, class A> class node_handle_map { BOOST_MOVABLE_BUT_NOT_COPYABLE(node_handle_map) template <typename Types> friend struct ::boost::unordered::detail::table; template <class K2, class T2, class H2, class P2, class A2> friend class boost::unordered::unordered_map; template <class K2, class T2, class H2, class P2, class A2> friend class boost::unordered::unordered_multimap; typedef typename boost::unordered::detail::rebind_wrap<A, std::pair<K const, T> >::type value_allocator; typedef boost::unordered::detail::allocator_traits<value_allocator> value_allocator_traits; typedef N node; typedef typename boost::unordered::detail::rebind_wrap<A, node>::type node_allocator; typedef boost::unordered::detail::allocator_traits<node_allocator> node_allocator_traits; typedef typename node_allocator_traits::pointer node_pointer; public: typedef K key_type; typedef T mapped_type; typedef A allocator_type; private: node_pointer ptr_; boost::unordered::detail::optional<value_allocator> alloc_; node_handle_map(node_pointer ptr, allocator_type const& a) : ptr_(ptr), alloc_(a) { } public: BOOST_CONSTEXPR node_handle_map() BOOST_NOEXCEPT : ptr_(), alloc_() {} ~node_handle_map() { if (ptr_) { node_allocator node_alloc(*alloc_); boost::unordered::detail::node_tmp<node_allocator> tmp( ptr_, node_alloc); } } node_handle_map(BOOST_RV_REF(node_handle_map) n) BOOST_NOEXCEPT : ptr_(n.ptr_), alloc_(boost::move(n.alloc_)) { n.ptr_ = node_pointer(); } node_handle_map& operator=(BOOST_RV_REF(node_handle_map) n) { BOOST_ASSERT(!alloc_.has_value() || value_allocator_traits:: propagate_on_container_move_assignment::value || (n.alloc_.has_value() && alloc_ == n.alloc_)); if (ptr_) { node_allocator node_alloc(*alloc_); boost::unordered::detail::node_tmp<node_allocator> tmp( ptr_, node_alloc); ptr_ = node_pointer(); } if (!alloc_.has_value() || value_allocator_traits::propagate_on_container_move_assignment:: value) { alloc_ = boost::move(n.alloc_); } ptr_ = n.ptr_; n.ptr_ = node_pointer(); return *this; } key_type& key() const { return const_cast<key_type&>(ptr_->value().first); } mapped_type& mapped() const { return ptr_->value().second; } allocator_type get_allocator() const { return *alloc_; } BOOST_EXPLICIT_OPERATOR_BOOL_NOEXCEPT() bool operator!() const BOOST_NOEXCEPT { return ptr_ ? 0 : 1; } bool empty() const BOOST_NOEXCEPT { return ptr_ ? 0 : 1; } void swap(node_handle_map& n) BOOST_NOEXCEPT_IF( value_allocator_traits::propagate_on_container_swap::value || value_allocator_traits::is_always_equal::value) { BOOST_ASSERT( !alloc_.has_value() || !n.alloc_.has_value() || value_allocator_traits::propagate_on_container_swap::value || alloc_ == n.alloc_); if (value_allocator_traits::propagate_on_container_swap::value || !alloc_.has_value() || !n.alloc_.has_value()) { boost::swap(alloc_, n.alloc_); } boost::swap(ptr_, n.ptr_); } }; template <class N, class K, class T, class A> void swap(node_handle_map<N, K, T, A>& x, node_handle_map<N, K, T, A>& y) BOOST_NOEXCEPT_IF(BOOST_NOEXCEPT_EXPR(x.swap(y))) { x.swap(y); } template <class N, class K, class T, class A> struct insert_return_type_map { private: BOOST_MOVABLE_BUT_NOT_COPYABLE(insert_return_type_map) typedef typename boost::unordered::detail::rebind_wrap<A, std::pair<K const, T> >::type value_allocator; typedef N node_; public: bool inserted; boost::unordered::iterator_detail::iterator<node_> position; boost::unordered::node_handle_map<N, K, T, A> node; insert_return_type_map() : inserted(false), position(), node() {} insert_return_type_map(BOOST_RV_REF(insert_return_type_map) x) BOOST_NOEXCEPT : inserted(x.inserted), position(x.position), node(boost::move(x.node)) { } insert_return_type_map& operator=(BOOST_RV_REF(insert_return_type_map) x) { inserted = x.inserted; position = x.position; node = boost::move(x.node); return *this; } }; template <class N, class K, class T, class A> void swap(insert_return_type_map<N, K, T, A>& x, insert_return_type_map<N, K, T, A>& y) { boost::swap(x.node, y.node); boost::swap(x.inserted, y.inserted); boost::swap(x.position, y.position); } } // namespace unordered } // namespace boost #if defined(BOOST_MSVC) #pragma warning(pop) #endif #endif // BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED