EVOLUTION-MANAGER
Edit File: polygon_set_data.hpp
/* Copyright 2008 Intel Corporation Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt). */ #ifndef BOOST_POLYGON_POLYGON_SET_DATA_HPP #define BOOST_POLYGON_POLYGON_SET_DATA_HPP #include "polygon_45_set_data.hpp" #include "polygon_45_set_concept.hpp" #include "polygon_traits.hpp" #include "detail/polygon_arbitrary_formation.hpp" namespace boost { namespace polygon { // utility function to round coordinate types down // rounds down for both negative and positive numbers // intended really for integer type T (does not make sense for float) template <typename T> static inline T round_down(double val) { T rounded_val = (T)(val); if(val < (double)rounded_val) --rounded_val; return rounded_val; } template <typename T> static inline point_data<T> round_down(point_data<double> v) { return point_data<T>(round_down<T>(v.x()),round_down<T>(v.y())); } //foward declare view template <typename ltype, typename rtype, int op_type> class polygon_set_view; template <typename T> class polygon_set_data { public: typedef T coordinate_type; typedef point_data<T> point_type; typedef std::pair<point_type, point_type> edge_type; typedef std::pair<edge_type, int> element_type; typedef std::vector<element_type> value_type; typedef typename value_type::const_iterator iterator_type; typedef polygon_set_data operator_arg_type; // default constructor inline polygon_set_data() : data_(), dirty_(false), unsorted_(false), is_45_(true) {} // constructor from an iterator pair over edge data template <typename iT> inline polygon_set_data(iT input_begin, iT input_end) : data_(), dirty_(false), unsorted_(false), is_45_(true) { for( ; input_begin != input_end; ++input_begin) { insert(*input_begin); } } // copy constructor inline polygon_set_data(const polygon_set_data& that) : data_(that.data_), dirty_(that.dirty_), unsorted_(that.unsorted_), is_45_(that.is_45_) {} // copy constructor template <typename ltype, typename rtype, int op_type> inline polygon_set_data(const polygon_set_view<ltype, rtype, op_type>& that); // destructor inline ~polygon_set_data() {} // assignement operator inline polygon_set_data& operator=(const polygon_set_data& that) { if(this == &that) return *this; data_ = that.data_; dirty_ = that.dirty_; unsorted_ = that.unsorted_; is_45_ = that.is_45_; return *this; } template <typename ltype, typename rtype, int op_type> inline polygon_set_data& operator=(const polygon_set_view<ltype, rtype, op_type>& geometry) { (*this) = geometry.value(); dirty_ = false; unsorted_ = false; return *this; } template <typename geometry_object> inline polygon_set_data& operator=(const geometry_object& geometry) { data_.clear(); insert(geometry); return *this; } // insert iterator range inline void insert(iterator_type input_begin, iterator_type input_end, bool is_hole = false) { if(input_begin == input_end || (!data_.empty() && &(*input_begin) == &(*(data_.begin())))) return; dirty_ = true; unsorted_ = true; while(input_begin != input_end) { insert(*input_begin, is_hole); ++input_begin; } } // insert iterator range template <typename iT> inline void insert(iT input_begin, iT input_end, bool is_hole = false) { if(input_begin == input_end) return; for(; input_begin != input_end; ++input_begin) { insert(*input_begin, is_hole); } } template <typename geometry_type> inline void insert(const geometry_type& geometry_object, bool is_hole = false) { insert(geometry_object, is_hole, typename geometry_concept<geometry_type>::type()); } template <typename polygon_type> inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_concept ) { insert_vertex_sequence(begin_points(polygon_object), end_points(polygon_object), winding(polygon_object), is_hole); } inline void insert(const polygon_set_data& ps, bool is_hole = false) { insert(ps.data_.begin(), ps.data_.end(), is_hole); } template <typename polygon_45_set_type> inline void insert(const polygon_45_set_type& ps, bool is_hole, polygon_45_set_concept) { std::vector<polygon_45_with_holes_data<typename polygon_45_set_traits<polygon_45_set_type>::coordinate_type> > polys; assign(polys, ps); insert(polys.begin(), polys.end(), is_hole); } template <typename polygon_90_set_type> inline void insert(const polygon_90_set_type& ps, bool is_hole, polygon_90_set_concept) { std::vector<polygon_90_with_holes_data<typename polygon_90_set_traits<polygon_90_set_type>::coordinate_type> > polys; assign(polys, ps); insert(polys.begin(), polys.end(), is_hole); } template <typename polygon_type> inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_45_concept ) { insert(polygon_object, is_hole, polygon_concept()); } template <typename polygon_type> inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_90_concept ) { insert(polygon_object, is_hole, polygon_concept()); } template <typename polygon_with_holes_type> inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole, polygon_with_holes_concept ) { insert(polygon_with_holes_object, is_hole, polygon_concept()); for(typename polygon_with_holes_traits<polygon_with_holes_type>::iterator_holes_type itr = begin_holes(polygon_with_holes_object); itr != end_holes(polygon_with_holes_object); ++itr) { insert(*itr, !is_hole, polygon_concept()); } } template <typename polygon_with_holes_type> inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole, polygon_45_with_holes_concept ) { insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); } template <typename polygon_with_holes_type> inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole, polygon_90_with_holes_concept ) { insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); } template <typename rectangle_type> inline void insert(const rectangle_type& rectangle_object, bool is_hole, rectangle_concept ) { polygon_90_data<coordinate_type> poly; assign(poly, rectangle_object); insert(poly, is_hole, polygon_concept()); } inline void insert_clean(const element_type& edge, bool is_hole = false) { if( ! scanline_base<coordinate_type>::is_45_degree(edge.first) && ! scanline_base<coordinate_type>::is_horizontal(edge.first) && ! scanline_base<coordinate_type>::is_vertical(edge.first) ) is_45_ = false; data_.push_back(edge); if(data_.back().first.second < data_.back().first.first) { std::swap(data_.back().first.second, data_.back().first.first); data_.back().second *= -1; } if(is_hole) data_.back().second *= -1; } inline void insert(const element_type& edge, bool is_hole = false) { insert_clean(edge, is_hole); dirty_ = true; unsorted_ = true; } template <class iT> inline void insert_vertex_sequence(iT begin_vertex, iT end_vertex, direction_1d winding, bool is_hole) { if (begin_vertex == end_vertex) { // No edges to insert. return; } // Current edge endpoints. iT vertex0 = begin_vertex; iT vertex1 = begin_vertex; if (++vertex1 == end_vertex) { // No edges to insert. return; } int wmultiplier = (winding == COUNTERCLOCKWISE) ? 1 : -1; if (is_hole) { wmultiplier = -wmultiplier; } dirty_ = true; unsorted_ = true; while (vertex0 != end_vertex) { point_type p0, p1; assign(p0, *vertex0); assign(p1, *vertex1); if (p0 != p1) { int hmultiplier = (p0.get(HORIZONTAL) == p1.get(HORIZONTAL)) ? -1 : 1; element_type elem(edge_type(p0, p1), hmultiplier * wmultiplier); insert_clean(elem); } ++vertex0; ++vertex1; if (vertex1 == end_vertex) { vertex1 = begin_vertex; } } } template <typename output_container> inline void get(output_container& output) const { get_dispatch(output, typename geometry_concept<typename output_container::value_type>::type()); } // append to the container cT with polygons of three or four verticies // slicing orientation is vertical template <class cT> void get_trapezoids(cT& container) const { clean(); trapezoid_arbitrary_formation<coordinate_type> pf; typedef typename polygon_arbitrary_formation<coordinate_type>::vertex_half_edge vertex_half_edge; std::vector<vertex_half_edge> data; for(iterator_type itr = data_.begin(); itr != data_.end(); ++itr){ data.push_back(vertex_half_edge((*itr).first.first, (*itr).first.second, (*itr).second)); data.push_back(vertex_half_edge((*itr).first.second, (*itr).first.first, -1 * (*itr).second)); } polygon_sort(data.begin(), data.end()); pf.scan(container, data.begin(), data.end()); //std::cout << "DONE FORMING POLYGONS\n"; } // append to the container cT with polygons of three or four verticies template <class cT> void get_trapezoids(cT& container, orientation_2d slicing_orientation) const { if(slicing_orientation == VERTICAL) { get_trapezoids(container); } else { polygon_set_data<T> ps(*this); ps.transform(axis_transformation(axis_transformation::SWAP_XY)); cT result; ps.get_trapezoids(result); for(typename cT::iterator itr = result.begin(); itr != result.end(); ++itr) { ::boost::polygon::transform(*itr, axis_transformation(axis_transformation::SWAP_XY)); } container.insert(container.end(), result.begin(), result.end()); } } // equivalence operator inline bool operator==(const polygon_set_data& p) const; // inequivalence operator inline bool operator!=(const polygon_set_data& p) const { return !((*this) == p); } // get iterator to begin vertex data inline iterator_type begin() const { return data_.begin(); } // get iterator to end vertex data inline iterator_type end() const { return data_.end(); } const value_type& value() const { return data_; } // clear the contents of the polygon_set_data inline void clear() { data_.clear(); dirty_ = unsorted_ = false; } // find out if Polygon set is empty inline bool empty() const { return data_.empty(); } // get the Polygon set size in vertices inline std::size_t size() const { clean(); return data_.size(); } // get the current Polygon set capacity in vertices inline std::size_t capacity() const { return data_.capacity(); } // reserve size of polygon set in vertices inline void reserve(std::size_t size) { return data_.reserve(size); } // find out if Polygon set is sorted inline bool sorted() const { return !unsorted_; } // find out if Polygon set is clean inline bool dirty() const { return dirty_; } void clean() const; void sort() const{ if(unsorted_) { polygon_sort(data_.begin(), data_.end()); unsorted_ = false; } } template <typename input_iterator_type> void set(input_iterator_type input_begin, input_iterator_type input_end) { clear(); reserve(std::distance(input_begin,input_end)); insert(input_begin, input_end); dirty_ = true; unsorted_ = true; } void set(const value_type& value) { data_ = value; dirty_ = true; unsorted_ = true; } template <typename rectangle_type> bool extents(rectangle_type& rect) { clean(); if(empty()) return false; bool first_iteration = true; for(iterator_type itr = begin(); itr != end(); ++itr) { rectangle_type edge_box; set_points(edge_box, (*itr).first.first, (*itr).first.second); if(first_iteration) rect = edge_box; else encompass(rect, edge_box); first_iteration = false; } return true; } inline polygon_set_data& resize(coordinate_type resizing, bool corner_fill_arc = false, unsigned int num_circle_segments=0); template <typename transform_type> inline polygon_set_data& transform(const transform_type& tr) { std::vector<polygon_with_holes_data<T> > polys; get(polys); clear(); for(std::size_t i = 0 ; i < polys.size(); ++i) { ::boost::polygon::transform(polys[i], tr); insert(polys[i]); } unsorted_ = true; dirty_ = true; return *this; } inline polygon_set_data& scale_up(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) { for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) { ::boost::polygon::scale_up((*itr).first.first, factor); ::boost::polygon::scale_up((*itr).first.second, factor); } return *this; } inline polygon_set_data& scale_down(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) { for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) { bool vb = (*itr).first.first.x() == (*itr).first.second.x(); ::boost::polygon::scale_down((*itr).first.first, factor); ::boost::polygon::scale_down((*itr).first.second, factor); bool va = (*itr).first.first.x() == (*itr).first.second.x(); if(!vb && va) { (*itr).second *= -1; } } unsorted_ = true; dirty_ = true; return *this; } template <typename scaling_type> inline polygon_set_data& scale(polygon_set_data&, const scaling_type& scaling) { for(typename value_type::iterator itr = begin(); itr != end(); ++itr) { bool vb = (*itr).first.first.x() == (*itr).first.second.x(); ::boost::polygon::scale((*itr).first.first, scaling); ::boost::polygon::scale((*itr).first.second, scaling); bool va = (*itr).first.first.x() == (*itr).first.second.x(); if(!vb && va) { (*itr).second *= -1; } } unsorted_ = true; dirty_ = true; return *this; } static inline void compute_offset_edge(point_data<long double>& pt1, point_data<long double>& pt2, const point_data<long double>& prev_pt, const point_data<long double>& current_pt, long double distance, int multiplier) { long double dx = current_pt.x() - prev_pt.x(); long double dy = current_pt.y() - prev_pt.y(); long double edge_length = std::sqrt(dx*dx + dy*dy); long double dnx = dy; long double dny = -dx; dnx = dnx * (long double)distance / edge_length; dny = dny * (long double)distance / edge_length; pt1.x(prev_pt.x() + (long double)dnx * (long double)multiplier); pt2.x(current_pt.x() + (long double)dnx * (long double)multiplier); pt1.y(prev_pt.y() + (long double)dny * (long double)multiplier); pt2.y(current_pt.y() + (long double)dny * (long double)multiplier); } static inline void modify_pt(point_data<coordinate_type>& pt, const point_data<coordinate_type>& prev_pt, const point_data<coordinate_type>& current_pt, const point_data<coordinate_type>& next_pt, coordinate_type distance, coordinate_type multiplier) { std::pair<point_data<long double>, point_data<long double> > he1, he2; he1.first.x((long double)(prev_pt.x())); he1.first.y((long double)(prev_pt.y())); he1.second.x((long double)(current_pt.x())); he1.second.y((long double)(current_pt.y())); he2.first.x((long double)(current_pt.x())); he2.first.y((long double)(current_pt.y())); he2.second.x((long double)(next_pt.x())); he2.second.y((long double)(next_pt.y())); compute_offset_edge(he1.first, he1.second, prev_pt, current_pt, distance, multiplier); compute_offset_edge(he2.first, he2.second, current_pt, next_pt, distance, multiplier); typedef scanline_base<long double>::compute_intersection_pack pack; point_data<long double> rpt; point_data<long double> bisectorpt((he1.second.x()+he2.first.x())/2, (he1.second.y()+he2.first.y())/2); point_data<long double> orig_pt((long double)pt.x(), (long double)pt.y()); if(euclidean_distance(bisectorpt, orig_pt) < distance/2) { if(!pack::compute_lazy_intersection(rpt, he1, he2, true, false)) { rpt = he1.second; //colinear offset edges use shared point } } else { if(!pack::compute_lazy_intersection(rpt, he1, std::pair<point_data<long double>, point_data<long double> >(orig_pt, bisectorpt), true, false)) { rpt = he1.second; //colinear offset edges use shared point } } pt.x((coordinate_type)(std::floor(rpt.x()+0.5))); pt.y((coordinate_type)(std::floor(rpt.y()+0.5))); } static void resize_poly_up(std::vector<point_data<coordinate_type> >& poly, coordinate_type distance, coordinate_type multiplier) { point_data<coordinate_type> first_pt = poly[0]; point_data<coordinate_type> second_pt = poly[1]; point_data<coordinate_type> prev_pt = poly[0]; point_data<coordinate_type> current_pt = poly[1]; for(std::size_t i = 2; i < poly.size()-1; ++i) { point_data<coordinate_type> next_pt = poly[i]; modify_pt(poly[i-1], prev_pt, current_pt, next_pt, distance, multiplier); prev_pt = current_pt; current_pt = next_pt; } point_data<coordinate_type> next_pt = first_pt; modify_pt(poly[poly.size()-2], prev_pt, current_pt, next_pt, distance, multiplier); prev_pt = current_pt; current_pt = next_pt; next_pt = second_pt; modify_pt(poly[0], prev_pt, current_pt, next_pt, distance, multiplier); poly.back() = poly.front(); } static bool resize_poly_down(std::vector<point_data<coordinate_type> >& poly, coordinate_type distance, coordinate_type multiplier) { std::vector<point_data<coordinate_type> > orig_poly(poly); rectangle_data<coordinate_type> extents_rectangle; set_points(extents_rectangle, poly[0], poly[0]); point_data<coordinate_type> first_pt = poly[0]; point_data<coordinate_type> second_pt = poly[1]; point_data<coordinate_type> prev_pt = poly[0]; point_data<coordinate_type> current_pt = poly[1]; encompass(extents_rectangle, current_pt); for(std::size_t i = 2; i < poly.size()-1; ++i) { point_data<coordinate_type> next_pt = poly[i]; encompass(extents_rectangle, next_pt); modify_pt(poly[i-1], prev_pt, current_pt, next_pt, distance, multiplier); prev_pt = current_pt; current_pt = next_pt; } if(delta(extents_rectangle, HORIZONTAL) <= std::abs(2*distance)) return false; if(delta(extents_rectangle, VERTICAL) <= std::abs(2*distance)) return false; point_data<coordinate_type> next_pt = first_pt; modify_pt(poly[poly.size()-2], prev_pt, current_pt, next_pt, distance, multiplier); prev_pt = current_pt; current_pt = next_pt; next_pt = second_pt; modify_pt(poly[0], prev_pt, current_pt, next_pt, distance, multiplier); poly.back() = poly.front(); //if the line segments formed between orignial and new points cross for an edge that edge inverts //if all edges invert the polygon should be discarded //if even one edge does not invert return true because the polygon is valid bool non_inverting_edge = false; for(std::size_t i = 1; i < poly.size(); ++i) { std::pair<point_data<coordinate_type>, point_data<coordinate_type> > he1(poly[i], orig_poly[i]), he2(poly[i-1], orig_poly[i-1]); if(!scanline_base<coordinate_type>::intersects(he1, he2)) { non_inverting_edge = true; break; } } return non_inverting_edge; } polygon_set_data& bloat(typename coordinate_traits<coordinate_type>::unsigned_area_type distance) { std::list<polygon_with_holes_data<coordinate_type> > polys; get(polys); clear(); for(typename std::list<polygon_with_holes_data<coordinate_type> >::iterator itr = polys.begin(); itr != polys.end(); ++itr) { resize_poly_up((*itr).self_.coords_, (coordinate_type)distance, (coordinate_type)1); insert_vertex_sequence((*itr).self_.begin(), (*itr).self_.end(), COUNTERCLOCKWISE, false); //inserts without holes for(typename std::list<polygon_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin(); itrh != (*itr).holes_.end(); ++itrh) { if(resize_poly_down((*itrh).coords_, (coordinate_type)distance, (coordinate_type)1)) { insert_vertex_sequence((*itrh).coords_.begin(), (*itrh).coords_.end(), CLOCKWISE, true); } } } return *this; } polygon_set_data& shrink(typename coordinate_traits<coordinate_type>::unsigned_area_type distance) { std::list<polygon_with_holes_data<coordinate_type> > polys; get(polys); clear(); for(typename std::list<polygon_with_holes_data<coordinate_type> >::iterator itr = polys.begin(); itr != polys.end(); ++itr) { if(resize_poly_down((*itr).self_.coords_, (coordinate_type)distance, (coordinate_type)-1)) { insert_vertex_sequence((*itr).self_.begin(), (*itr).self_.end(), COUNTERCLOCKWISE, false); //inserts without holes for(typename std::list<polygon_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin(); itrh != (*itr).holes_.end(); ++itrh) { resize_poly_up((*itrh).coords_, (coordinate_type)distance, (coordinate_type)-1); insert_vertex_sequence((*itrh).coords_.begin(), (*itrh).coords_.end(), CLOCKWISE, true); } } } return *this; } // TODO:: should be private template <typename geometry_type> inline polygon_set_data& insert_with_resize(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc=false, unsigned int num_circle_segments=0, bool hole = false) { return insert_with_resize_dispatch(poly, resizing, corner_fill_arc, num_circle_segments, hole, typename geometry_concept<geometry_type>::type()); } template <typename geometry_type> inline polygon_set_data& insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole, polygon_with_holes_concept) { insert_with_resize_dispatch(poly, resizing, corner_fill_arc, num_circle_segments, hole, polygon_concept()); for(typename polygon_with_holes_traits<geometry_type>::iterator_holes_type itr = begin_holes(poly); itr != end_holes(poly); ++itr) { insert_with_resize_dispatch(*itr, resizing, corner_fill_arc, num_circle_segments, !hole, polygon_concept()); } return *this; } template <typename geometry_type> inline polygon_set_data& insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole, polygon_concept) { if (resizing==0) return *this; // one dimensional used to store CCW/CW flag //direction_1d wdir = winding(poly); // LOW==CLOCKWISE just faster to type // so > 0 is CCW //int multiplier = wdir == LOW ? -1 : 1; //std::cout<<" multiplier : "<<multiplier<<std::endl; //if(hole) resizing *= -1; direction_1d resize_wdir = resizing>0?COUNTERCLOCKWISE:CLOCKWISE; typedef typename polygon_data<T>::iterator_type piterator; piterator first, second, third, end, real_end; real_end = end_points(poly); third = begin_points(poly); first = third; if(first == real_end) return *this; ++third; if(third == real_end) return *this; second = end = third; ++third; if(third == real_end) return *this; // for 1st corner std::vector<point_data<T> > first_pts; std::vector<point_data<T> > all_pts; direction_1d first_wdir = CLOCKWISE; // for all corners polygon_set_data<T> sizingSet; bool sizing_sign = resizing<0; bool prev_concave = true; point_data<T> prev_point; //int iCtr=0; //insert minkofski shapes on edges and corners do { // REAL WORK IS HERE //first, second and third point to points in correct CCW order // check if convex or concave case point_data<coordinate_type> normal1( second->y()-first->y(), first->x()-second->x()); point_data<coordinate_type> normal2( third->y()-second->y(), second->x()-third->x()); double direction = normal1.x()*normal2.y()- normal2.x()*normal1.y(); bool convex = direction>0; bool treat_as_concave = !convex; if(sizing_sign) treat_as_concave = convex; point_data<double> v; assign(v, normal1); double s2 = (v.x()*v.x()+v.y()*v.y()); double s = std::sqrt(s2)/resizing; v = point_data<double>(v.x()/s,v.y()/s); point_data<T> curr_prev; if (prev_concave) //TODO missing round_down() curr_prev = point_data<T>(first->x()+v.x(),first->y()+v.y()); else curr_prev = prev_point; // around concave corners - insert rectangle // if previous corner is concave it's point info may be ignored if ( treat_as_concave) { std::vector<point_data<T> > pts; pts.push_back(point_data<T>(second->x()+v.x(),second->y()+v.y())); pts.push_back(*second); pts.push_back(*first); pts.push_back(point_data<T>(curr_prev)); if (first_pts.size()){ sizingSet.insert_vertex_sequence(pts.begin(),pts.end(), resize_wdir,false); }else { first_pts=pts; first_wdir = resize_wdir; } } else { // add either intersection_quad or pie_shape, based on corner_fill_arc option // for convex corner (convexity depends on sign of resizing, whether we shrink or grow) std::vector< std::vector<point_data<T> > > pts; direction_1d winding; winding = convex?COUNTERCLOCKWISE:CLOCKWISE; if (make_resizing_vertex_list(pts, curr_prev, prev_concave, *first, *second, *third, resizing , num_circle_segments, corner_fill_arc)) { if (first_pts.size()) { for (int i=0; i<pts.size(); i++) { sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false); } } else { first_pts = pts[0]; first_wdir = resize_wdir; for (int i=1; i<pts.size(); i++) { sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false); } } prev_point = curr_prev; } else { treat_as_concave = true; } } prev_concave = treat_as_concave; first = second; second = third; ++third; if(third == real_end) { third = begin_points(poly); if(*second == *third) { ++third; //skip first point if it is duplicate of last point } } } while(second != end); // handle insertion of first point if (!prev_concave) { first_pts[first_pts.size()-1]=prev_point; } sizingSet.insert_vertex_sequence(first_pts.begin(),first_pts.end(),first_wdir,false); polygon_set_data<coordinate_type> tmp; //insert original shape tmp.insert(poly, false, polygon_concept()); if((resizing < 0) ^ hole) tmp -= sizingSet; else tmp += sizingSet; //tmp.clean(); insert(tmp, hole); return (*this); } inline polygon_set_data& interact(const polygon_set_data& that); inline bool downcast(polygon_45_set_data<coordinate_type>& result) const { if(!is_45_) return false; for(iterator_type itr = begin(); itr != end(); ++itr) { const element_type& elem = *itr; int count = elem.second; int rise = 1; //up sloping 45 if(scanline_base<coordinate_type>::is_horizontal(elem.first)) rise = 0; else if(scanline_base<coordinate_type>::is_vertical(elem.first)) rise = 2; else { if(!scanline_base<coordinate_type>::is_45_degree(elem.first)) { is_45_ = false; return false; //consider throwing because is_45_ has be be wrong } if(elem.first.first.y() > elem.first.second.y()) rise = -1; //down sloping 45 } typename polygon_45_set_data<coordinate_type>::Vertex45Compact vertex(elem.first.first, rise, count); result.insert(vertex); typename polygon_45_set_data<coordinate_type>::Vertex45Compact vertex2(elem.first.second, rise, -count); result.insert(vertex2); } return true; } inline GEOMETRY_CONCEPT_ID concept_downcast() const { typedef typename coordinate_traits<coordinate_type>::coordinate_difference delta_type; bool is_45 = false; for(iterator_type itr = begin(); itr != end(); ++itr) { const element_type& elem = *itr; delta_type h_delta = euclidean_distance(elem.first.first, elem.first.second, HORIZONTAL); delta_type v_delta = euclidean_distance(elem.first.first, elem.first.second, VERTICAL); if(h_delta != 0 || v_delta != 0) { //neither delta is zero and the edge is not MANHATTAN if(v_delta != h_delta && v_delta != -h_delta) return POLYGON_SET_CONCEPT; else is_45 = true; } } if(is_45) return POLYGON_45_SET_CONCEPT; return POLYGON_90_SET_CONCEPT; } private: mutable value_type data_; mutable bool dirty_; mutable bool unsorted_; mutable bool is_45_; private: //functions template <typename output_container> void get_dispatch(output_container& output, polygon_concept tag) const { get_fracture(output, true, tag); } template <typename output_container> void get_dispatch(output_container& output, polygon_with_holes_concept tag) const { get_fracture(output, false, tag); } template <typename output_container, typename concept_type> void get_fracture(output_container& container, bool fracture_holes, concept_type ) const { clean(); polygon_arbitrary_formation<coordinate_type> pf(fracture_holes); typedef typename polygon_arbitrary_formation<coordinate_type>::vertex_half_edge vertex_half_edge; std::vector<vertex_half_edge> data; for(iterator_type itr = data_.begin(); itr != data_.end(); ++itr){ data.push_back(vertex_half_edge((*itr).first.first, (*itr).first.second, (*itr).second)); data.push_back(vertex_half_edge((*itr).first.second, (*itr).first.first, -1 * (*itr).second)); } polygon_sort(data.begin(), data.end()); pf.scan(container, data.begin(), data.end()); } }; struct polygon_set_concept; template <typename T> struct geometry_concept<polygon_set_data<T> > { typedef polygon_set_concept type; }; // template <typename T> // inline double compute_area(point_data<T>& a, point_data<T>& b, point_data<T>& c) { // return (double)(b.x()-a.x())*(double)(c.y()-a.y())- (double)(c.x()-a.x())*(double)(b.y()-a.y()); // } template <typename T> inline int make_resizing_vertex_list(std::vector<std::vector<point_data< T> > >& return_points, point_data<T>& curr_prev, bool ignore_prev_point, point_data< T> start, point_data<T> middle, point_data< T> end, double sizing_distance, unsigned int num_circle_segments, bool corner_fill_arc) { // handle the case of adding an intersection point point_data<double> dn1( middle.y()-start.y(), start.x()-middle.x()); double size = sizing_distance/std::sqrt( dn1.x()*dn1.x()+dn1.y()*dn1.y()); dn1 = point_data<double>( dn1.x()*size, dn1.y()* size); point_data<double> dn2( end.y()-middle.y(), middle.x()-end.x()); size = sizing_distance/std::sqrt( dn2.x()*dn2.x()+dn2.y()*dn2.y()); dn2 = point_data<double>( dn2.x()*size, dn2.y()* size); point_data<double> start_offset((start.x()+dn1.x()),(start.y()+dn1.y())); point_data<double> mid1_offset((middle.x()+dn1.x()),(middle.y()+dn1.y())); point_data<double> end_offset((end.x()+dn2.x()),(end.y()+dn2.y())); point_data<double> mid2_offset((middle.x()+dn2.x()),(middle.y()+dn2.y())); if (ignore_prev_point) curr_prev = round_down<T>(start_offset); if (corner_fill_arc) { std::vector<point_data< T> > return_points1; return_points.push_back(return_points1); std::vector<point_data< T> >& return_points_back = return_points[return_points.size()-1]; return_points_back.push_back(round_down<T>(mid1_offset)); return_points_back.push_back(middle); return_points_back.push_back(start); return_points_back.push_back(curr_prev); point_data<double> dmid(middle.x(),middle.y()); return_points.push_back(return_points1); int num = make_arc(return_points[return_points.size()-1],mid1_offset,mid2_offset,dmid,sizing_distance,num_circle_segments); curr_prev = round_down<T>(mid2_offset); return num; } std::pair<point_data<double>,point_data<double> > he1(start_offset,mid1_offset); std::pair<point_data<double>,point_data<double> > he2(mid2_offset ,end_offset); //typedef typename high_precision_type<double>::type high_precision; point_data<T> intersect; typename scanline_base<T>::compute_intersection_pack pack; bool res = pack.compute_intersection(intersect,he1,he2,true); if( res ) { std::vector<point_data< T> > return_points1; return_points.push_back(return_points1); std::vector<point_data< T> >& return_points_back = return_points[return_points.size()-1]; return_points_back.push_back(intersect); return_points_back.push_back(middle); return_points_back.push_back(start); return_points_back.push_back(curr_prev); //double d1= compute_area(intersect,middle,start); //double d2= compute_area(start,curr_prev,intersect); curr_prev = intersect; return return_points.size(); } return 0; } // this routine should take in start and end point s.t. end point is CCW from start // it sould make a pie slice polygon that is an intersection of that arc // with an ngon segments approximation of the circle centered at center with radius r // point start is gauaranteed to be on the segmentation // returnPoints will start with the first point after start // returnPoints vector may be empty template <typename T> inline int make_arc(std::vector<point_data< T> >& return_points, point_data< double> start, point_data< double> end, point_data< double> center, double r, unsigned int num_circle_segments) { const double our_pi=3.1415926535897932384626433832795028841971; // derive start and end angles double ps = atan2(start.y()-center.y(), start.x()-center.x()); double pe = atan2(end.y()-center.y(), end.x()-center.x()); if (ps < 0.0) ps += 2.0 * our_pi; if (pe <= 0.0) pe += 2.0 * our_pi; if (ps >= 2.0 * our_pi) ps -= 2.0 * our_pi; while (pe <= ps) pe += 2.0 * our_pi; double delta_angle = (2.0 * our_pi) / (double)num_circle_segments; if ( start==end) // full circle? { ps = delta_angle*0.5; pe = ps + our_pi * 2.0; double x,y; x = center.x() + r * cos(ps); y = center.y() + r * sin(ps); start = point_data<double>(x,y); end = start; } return_points.push_back(round_down<T>(center)); return_points.push_back(round_down<T>(start)); unsigned int i=0; double curr_angle = ps+delta_angle; while( curr_angle < pe - 0.01 && i < 2 * num_circle_segments) { i++; double x = center.x() + r * cos( curr_angle); double y = center.y() + r * sin( curr_angle); return_points.push_back( round_down<T>((point_data<double>(x,y)))); curr_angle+=delta_angle; } return_points.push_back(round_down<T>(end)); return return_points.size(); } }// close namespace }// close name space #include "detail/scan_arbitrary.hpp" namespace boost { namespace polygon { //ConnectivityExtraction computes the graph of connectivity between rectangle, polygon and //polygon set graph nodes where an edge is created whenever the geometry in two nodes overlap template <typename coordinate_type> class connectivity_extraction{ private: typedef arbitrary_connectivity_extraction<coordinate_type, int> ce; ce ce_; unsigned int nodeCount_; public: inline connectivity_extraction() : ce_(), nodeCount_(0) {} inline connectivity_extraction(const connectivity_extraction& that) : ce_(that.ce_), nodeCount_(that.nodeCount_) {} inline connectivity_extraction& operator=(const connectivity_extraction& that) { ce_ = that.ce_; nodeCount_ = that.nodeCount_; {} return *this; } //insert a polygon set graph node, the value returned is the id of the graph node inline unsigned int insert(const polygon_set_data<coordinate_type>& ps) { ps.clean(); ce_.populateTouchSetData(ps.begin(), ps.end(), nodeCount_); return nodeCount_++; } template <class GeoObjT> inline unsigned int insert(const GeoObjT& geoObj) { polygon_set_data<coordinate_type> ps; ps.insert(geoObj); return insert(ps); } //extract connectivity and store the edges in the graph //graph must be indexable by graph node id and the indexed value must be a std::set of //graph node id template <class GraphT> inline void extract(GraphT& graph) { ce_.execute(graph); } }; template <typename T> polygon_set_data<T>& polygon_set_data<T>::interact(const polygon_set_data<T>& that) { connectivity_extraction<coordinate_type> ce; std::vector<polygon_with_holes_data<T> > polys; get(polys); clear(); for(std::size_t i = 0; i < polys.size(); ++i) { ce.insert(polys[i]); } int id = ce.insert(that); std::vector<std::set<int> > graph(id+1); ce.extract(graph); for(std::set<int>::iterator itr = graph[id].begin(); itr != graph[id].end(); ++itr) { insert(polys[*itr]); } return *this; } } } #include "polygon_set_traits.hpp" #include "detail/polygon_set_view.hpp" #include "polygon_set_concept.hpp" #include "detail/minkowski.hpp" #endif