EVOLUTION-MANAGER
Edit File: vector_assign.hpp
// // Copyright (c) 2000-2002 // Joerg Walter, Mathias Koch // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef _BOOST_UBLAS_VECTOR_ASSIGN_ #define _BOOST_UBLAS_VECTOR_ASSIGN_ #include <boost/numeric/ublas/functional.hpp> // scalar_assign // Required for make_conformant storage #include <vector> // Iterators based on ideas of Jeremy Siek namespace boost { namespace numeric { namespace ublas { namespace detail { // Weak equality check - useful to compare equality two arbitary vector expression results. // Since the actual expressions are unknown, we check for and arbitary error bound // on the relative error. // For a linear expression the infinity norm makes sense as we do not know how the elements will be // combined in the expression. False positive results are inevitable for arbirary expressions! template<class E1, class E2, class S> BOOST_UBLAS_INLINE bool equals (const vector_expression<E1> &e1, const vector_expression<E2> &e2, S epsilon, S min_norm) { return norm_inf (e1 - e2) <= epsilon * std::max<S> (std::max<S> (norm_inf (e1), norm_inf (e2)), min_norm); } template<class E1, class E2> BOOST_UBLAS_INLINE bool expression_type_check (const vector_expression<E1> &e1, const vector_expression<E2> &e2) { typedef typename type_traits<typename promote_traits<typename E1::value_type, typename E2::value_type>::promote_type>::real_type real_type; return equals (e1, e2, BOOST_UBLAS_TYPE_CHECK_EPSILON, BOOST_UBLAS_TYPE_CHECK_MIN); } // Make sparse proxies conformant template<class V, class E> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void make_conformant (V &v, const vector_expression<E> &e) { BOOST_UBLAS_CHECK (v.size () == e ().size (), bad_size ()); typedef typename V::size_type size_type; typedef typename V::difference_type difference_type; typedef typename V::value_type value_type; // FIXME unbounded_array with push_back maybe better std::vector<size_type> index; typename V::iterator it (v.begin ()); typename V::iterator it_end (v.end ()); typename E::const_iterator ite (e ().begin ()); typename E::const_iterator ite_end (e ().end ()); if (it != it_end && ite != ite_end) { size_type it_index = it.index (), ite_index = ite.index (); for (;;) { difference_type compare = it_index - ite_index; if (compare == 0) { ++ it, ++ ite; if (it != it_end && ite != ite_end) { it_index = it.index (); ite_index = ite.index (); } else break; } else if (compare < 0) { increment (it, it_end, - compare); if (it != it_end) it_index = it.index (); else break; } else if (compare > 0) { if (*ite != value_type/*zero*/()) index.push_back (ite.index ()); ++ ite; if (ite != ite_end) ite_index = ite.index (); else break; } } } while (ite != ite_end) { if (*ite != value_type/*zero*/()) index.push_back (ite.index ()); ++ ite; } for (size_type k = 0; k < index.size (); ++ k) v (index [k]) = value_type/*zero*/(); } }//namespace detail // Explicitly iterating template<template <class T1, class T2> class F, class V, class T> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void iterating_vector_assign_scalar (V &v, const T &t) { typedef F<typename V::iterator::reference, T> functor_type; typedef typename V::difference_type difference_type; difference_type size (v.size ()); typename V::iterator it (v.begin ()); BOOST_UBLAS_CHECK (v.end () - it == size, bad_size ()); #ifndef BOOST_UBLAS_USE_DUFF_DEVICE while (-- size >= 0) functor_type::apply (*it, t), ++ it; #else DD (size, 4, r, (functor_type::apply (*it, t), ++ it)); #endif } // Explicitly case template<template <class T1, class T2> class F, class V, class T> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void indexing_vector_assign_scalar (V &v, const T &t) { typedef F<typename V::reference, T> functor_type; typedef typename V::size_type size_type; size_type size (v.size ()); #ifndef BOOST_UBLAS_USE_DUFF_DEVICE for (size_type i = 0; i < size; ++ i) functor_type::apply (v (i), t); #else size_type i (0); DD (size, 4, r, (functor_type::apply (v (i), t), ++ i)); #endif } // Dense (proxy) case template<template <class T1, class T2> class F, class V, class T> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void vector_assign_scalar (V &v, const T &t, dense_proxy_tag) { #ifdef BOOST_UBLAS_USE_INDEXING indexing_vector_assign_scalar<F> (v, t); #elif BOOST_UBLAS_USE_ITERATING iterating_vector_assign_scalar<F> (v, t); #else typedef typename V::size_type size_type; size_type size (v.size ()); if (size >= BOOST_UBLAS_ITERATOR_THRESHOLD) iterating_vector_assign_scalar<F> (v, t); else indexing_vector_assign_scalar<F> (v, t); #endif } // Packed (proxy) case template<template <class T1, class T2> class F, class V, class T> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void vector_assign_scalar (V &v, const T &t, packed_proxy_tag) { typedef F<typename V::iterator::reference, T> functor_type; typedef typename V::difference_type difference_type; typename V::iterator it (v.begin ()); difference_type size (v.end () - it); while (-- size >= 0) functor_type::apply (*it, t), ++ it; } // Sparse (proxy) case template<template <class T1, class T2> class F, class V, class T> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void vector_assign_scalar (V &v, const T &t, sparse_proxy_tag) { typedef F<typename V::iterator::reference, T> functor_type; typename V::iterator it (v.begin ()); typename V::iterator it_end (v.end ()); while (it != it_end) functor_type::apply (*it, t), ++ it; } // Dispatcher template<template <class T1, class T2> class F, class V, class T> BOOST_UBLAS_INLINE void vector_assign_scalar (V &v, const T &t) { typedef typename V::storage_category storage_category; vector_assign_scalar<F> (v, t, storage_category ()); } template<class SC, bool COMPUTED, class RI> struct vector_assign_traits { typedef SC storage_category; }; template<bool COMPUTED> struct vector_assign_traits<dense_tag, COMPUTED, packed_random_access_iterator_tag> { typedef packed_tag storage_category; }; template<> struct vector_assign_traits<dense_tag, false, sparse_bidirectional_iterator_tag> { typedef sparse_tag storage_category; }; template<> struct vector_assign_traits<dense_tag, true, sparse_bidirectional_iterator_tag> { typedef sparse_proxy_tag storage_category; }; template<bool COMPUTED> struct vector_assign_traits<dense_proxy_tag, COMPUTED, packed_random_access_iterator_tag> { typedef packed_proxy_tag storage_category; }; template<> struct vector_assign_traits<dense_proxy_tag, false, sparse_bidirectional_iterator_tag> { typedef sparse_proxy_tag storage_category; }; template<> struct vector_assign_traits<dense_proxy_tag, true, sparse_bidirectional_iterator_tag> { typedef sparse_proxy_tag storage_category; }; template<> struct vector_assign_traits<packed_tag, false, sparse_bidirectional_iterator_tag> { typedef sparse_tag storage_category; }; template<> struct vector_assign_traits<packed_tag, true, sparse_bidirectional_iterator_tag> { typedef sparse_proxy_tag storage_category; }; template<bool COMPUTED> struct vector_assign_traits<packed_proxy_tag, COMPUTED, sparse_bidirectional_iterator_tag> { typedef sparse_proxy_tag storage_category; }; template<> struct vector_assign_traits<sparse_tag, true, dense_random_access_iterator_tag> { typedef sparse_proxy_tag storage_category; }; template<> struct vector_assign_traits<sparse_tag, true, packed_random_access_iterator_tag> { typedef sparse_proxy_tag storage_category; }; template<> struct vector_assign_traits<sparse_tag, true, sparse_bidirectional_iterator_tag> { typedef sparse_proxy_tag storage_category; }; // Explicitly iterating template<template <class T1, class T2> class F, class V, class E> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void iterating_vector_assign (V &v, const vector_expression<E> &e) { typedef F<typename V::iterator::reference, typename E::value_type> functor_type; typedef typename V::difference_type difference_type; difference_type size (BOOST_UBLAS_SAME (v.size (), e ().size ())); typename V::iterator it (v.begin ()); BOOST_UBLAS_CHECK (v.end () - it == size, bad_size ()); typename E::const_iterator ite (e ().begin ()); BOOST_UBLAS_CHECK (e ().end () - ite == size, bad_size ()); #ifndef BOOST_UBLAS_USE_DUFF_DEVICE while (-- size >= 0) functor_type::apply (*it, *ite), ++ it, ++ ite; #else DD (size, 2, r, (functor_type::apply (*it, *ite), ++ it, ++ ite)); #endif } // Explicitly indexing template<template <class T1, class T2> class F, class V, class E> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void indexing_vector_assign (V &v, const vector_expression<E> &e) { typedef F<typename V::reference, typename E::value_type> functor_type; typedef typename V::size_type size_type; size_type size (BOOST_UBLAS_SAME (v.size (), e ().size ())); #ifndef BOOST_UBLAS_USE_DUFF_DEVICE for (size_type i = 0; i < size; ++ i) functor_type::apply (v (i), e () (i)); #else size_type i (0); DD (size, 2, r, (functor_type::apply (v (i), e () (i)), ++ i)); #endif } // Dense (proxy) case template<template <class T1, class T2> class F, class V, class E> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void vector_assign (V &v, const vector_expression<E> &e, dense_proxy_tag) { #ifdef BOOST_UBLAS_USE_INDEXING indexing_vector_assign<F> (v, e); #elif BOOST_UBLAS_USE_ITERATING iterating_vector_assign<F> (v, e); #else typedef typename V::size_type size_type; size_type size (BOOST_UBLAS_SAME (v.size (), e ().size ())); if (size >= BOOST_UBLAS_ITERATOR_THRESHOLD) iterating_vector_assign<F> (v, e); else indexing_vector_assign<F> (v, e); #endif } // Packed (proxy) case template<template <class T1, class T2> class F, class V, class E> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void vector_assign (V &v, const vector_expression<E> &e, packed_proxy_tag) { BOOST_UBLAS_CHECK (v.size () == e ().size (), bad_size ()); typedef F<typename V::iterator::reference, typename E::value_type> functor_type; typedef typename V::difference_type difference_type; typedef typename V::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK vector<value_type> cv (v.size ()); indexing_vector_assign<scalar_assign> (cv, v); indexing_vector_assign<F> (cv, e); #endif typename V::iterator it (v.begin ()); typename V::iterator it_end (v.end ()); typename E::const_iterator ite (e ().begin ()); typename E::const_iterator ite_end (e ().end ()); difference_type it_size (it_end - it); difference_type ite_size (ite_end - ite); if (it_size > 0 && ite_size > 0) { difference_type size ((std::min) (difference_type (it.index () - ite.index ()), ite_size)); if (size > 0) { ite += size; ite_size -= size; } } if (it_size > 0 && ite_size > 0) { difference_type size ((std::min) (difference_type (ite.index () - it.index ()), it_size)); if (size > 0) { it_size -= size; //Disabled warning C4127 because the conditional expression is constant #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4127) #endif if (!functor_type::computed) { #ifdef _MSC_VER #pragma warning(pop) #endif while (-- size >= 0) // zeroing functor_type::apply (*it, value_type/*zero*/()), ++ it; } else { it += size; } } } difference_type size ((std::min) (it_size, ite_size)); it_size -= size; ite_size -= size; while (-- size >= 0) functor_type::apply (*it, *ite), ++ it, ++ ite; size = it_size; //Disabled warning C4127 because the conditional expression is constant #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4127) #endif if (!functor_type::computed) { #ifdef _MSC_VER #pragma warning(pop) #endif while (-- size >= 0) // zeroing functor_type::apply (*it, value_type/*zero*/()), ++ it; } else { it += size; } #if BOOST_UBLAS_TYPE_CHECK if (! disable_type_check<bool>::value) BOOST_UBLAS_CHECK (detail::expression_type_check (v, cv), external_logic ("external logic or bad condition of inputs")); #endif } // Sparse case template<template <class T1, class T2> class F, class V, class E> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void vector_assign (V &v, const vector_expression<E> &e, sparse_tag) { BOOST_UBLAS_CHECK (v.size () == e ().size (), bad_size ()); typedef F<typename V::iterator::reference, typename E::value_type> functor_type; //Disabled warning C4127 because the conditional expression is constant #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4127) #endif BOOST_STATIC_ASSERT ((!functor_type::computed)); #ifdef _MSC_VER #pragma warning(pop) #endif typedef typename V::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK vector<value_type> cv (v.size ()); indexing_vector_assign<scalar_assign> (cv, v); indexing_vector_assign<F> (cv, e); #endif v.clear (); typename E::const_iterator ite (e ().begin ()); typename E::const_iterator ite_end (e ().end ()); while (ite != ite_end) { value_type t (*ite); if (t != value_type/*zero*/()) v.insert_element (ite.index (), t); ++ ite; } #if BOOST_UBLAS_TYPE_CHECK if (! disable_type_check<bool>::value) BOOST_UBLAS_CHECK (detail::expression_type_check (v, cv), external_logic ("external logic or bad condition of inputs")); #endif } // Sparse proxy or functional case template<template <class T1, class T2> class F, class V, class E> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void vector_assign (V &v, const vector_expression<E> &e, sparse_proxy_tag) { BOOST_UBLAS_CHECK (v.size () == e ().size (), bad_size ()); typedef F<typename V::iterator::reference, typename E::value_type> functor_type; typedef typename V::size_type size_type; typedef typename V::difference_type difference_type; typedef typename V::value_type value_type; #if BOOST_UBLAS_TYPE_CHECK vector<value_type> cv (v.size ()); indexing_vector_assign<scalar_assign> (cv, v); indexing_vector_assign<F> (cv, e); #endif detail::make_conformant (v, e); typename V::iterator it (v.begin ()); typename V::iterator it_end (v.end ()); typename E::const_iterator ite (e ().begin ()); typename E::const_iterator ite_end (e ().end ()); if (it != it_end && ite != ite_end) { size_type it_index = it.index (), ite_index = ite.index (); for (;;) { difference_type compare = it_index - ite_index; if (compare == 0) { functor_type::apply (*it, *ite); ++ it, ++ ite; if (it != it_end && ite != ite_end) { it_index = it.index (); ite_index = ite.index (); } else break; } else if (compare < 0) { //Disabled warning C4127 because the conditional expression is constant #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4127) #endif if (!functor_type::computed) { #ifdef _MSC_VER #pragma warning(pop) #endif functor_type::apply (*it, value_type/*zero*/()); ++ it; } else increment (it, it_end, - compare); if (it != it_end) it_index = it.index (); else break; } else if (compare > 0) { increment (ite, ite_end, compare); if (ite != ite_end) ite_index = ite.index (); else break; } } } //Disabled warning C4127 because the conditional expression is constant #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4127) #endif if (!functor_type::computed) { #ifdef _MSC_VER #pragma warning(pop) #endif while (it != it_end) { // zeroing functor_type::apply (*it, value_type/*zero*/()); ++ it; } } else { it = it_end; } #if BOOST_UBLAS_TYPE_CHECK if (! disable_type_check<bool>::value) BOOST_UBLAS_CHECK (detail::expression_type_check (v, cv), external_logic ("external logic or bad condition of inputs")); #endif } // Dispatcher template<template <class T1, class T2> class F, class V, class E> BOOST_UBLAS_INLINE void vector_assign (V &v, const vector_expression<E> &e) { typedef typename vector_assign_traits<typename V::storage_category, F<typename V::reference, typename E::value_type>::computed, typename E::const_iterator::iterator_category>::storage_category storage_category; vector_assign<F> (v, e, storage_category ()); } template<class SC, class RI> struct vector_swap_traits { typedef SC storage_category; }; template<> struct vector_swap_traits<dense_proxy_tag, sparse_bidirectional_iterator_tag> { typedef sparse_proxy_tag storage_category; }; template<> struct vector_swap_traits<packed_proxy_tag, sparse_bidirectional_iterator_tag> { typedef sparse_proxy_tag storage_category; }; // Dense (proxy) case template<template <class T1, class T2> class F, class V, class E> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void vector_swap (V &v, vector_expression<E> &e, dense_proxy_tag) { typedef F<typename V::iterator::reference, typename E::iterator::reference> functor_type; typedef typename V::difference_type difference_type; difference_type size (BOOST_UBLAS_SAME (v.size (), e ().size ())); typename V::iterator it (v.begin ()); typename E::iterator ite (e ().begin ()); while (-- size >= 0) functor_type::apply (*it, *ite), ++ it, ++ ite; } // Packed (proxy) case template<template <class T1, class T2> class F, class V, class E> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void vector_swap (V &v, vector_expression<E> &e, packed_proxy_tag) { typedef F<typename V::iterator::reference, typename E::iterator::reference> functor_type; typedef typename V::difference_type difference_type; typename V::iterator it (v.begin ()); typename V::iterator it_end (v.end ()); typename E::iterator ite (e ().begin ()); typename E::iterator ite_end (e ().end ()); difference_type it_size (it_end - it); difference_type ite_size (ite_end - ite); if (it_size > 0 && ite_size > 0) { difference_type size ((std::min) (difference_type (it.index () - ite.index ()), ite_size)); if (size > 0) { ite += size; ite_size -= size; } } if (it_size > 0 && ite_size > 0) { difference_type size ((std::min) (difference_type (ite.index () - it.index ()), it_size)); if (size > 0) it_size -= size; } difference_type size ((std::min) (it_size, ite_size)); it_size -= size; ite_size -= size; while (-- size >= 0) functor_type::apply (*it, *ite), ++ it, ++ ite; } // Sparse proxy case template<template <class T1, class T2> class F, class V, class E> // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. void vector_swap (V &v, vector_expression<E> &e, sparse_proxy_tag) { BOOST_UBLAS_CHECK (v.size () == e ().size (), bad_size ()); typedef F<typename V::iterator::reference, typename E::iterator::reference> functor_type; typedef typename V::size_type size_type; typedef typename V::difference_type difference_type; detail::make_conformant (v, e); // FIXME should be a seperate restriction for E detail::make_conformant (e (), v); typename V::iterator it (v.begin ()); typename V::iterator it_end (v.end ()); typename E::iterator ite (e ().begin ()); typename E::iterator ite_end (e ().end ()); if (it != it_end && ite != ite_end) { size_type it_index = it.index (), ite_index = ite.index (); for (;;) { difference_type compare = it_index - ite_index; if (compare == 0) { functor_type::apply (*it, *ite); ++ it, ++ ite; if (it != it_end && ite != ite_end) { it_index = it.index (); ite_index = ite.index (); } else break; } else if (compare < 0) { increment (it, it_end, - compare); if (it != it_end) it_index = it.index (); else break; } else if (compare > 0) { increment (ite, ite_end, compare); if (ite != ite_end) ite_index = ite.index (); else break; } } } #if BOOST_UBLAS_TYPE_CHECK increment (ite, ite_end); increment (it, it_end); #endif } // Dispatcher template<template <class T1, class T2> class F, class V, class E> BOOST_UBLAS_INLINE void vector_swap (V &v, vector_expression<E> &e) { typedef typename vector_swap_traits<typename V::storage_category, typename E::const_iterator::iterator_category>::storage_category storage_category; vector_swap<F> (v, e, storage_category ()); } }}} #endif