EVOLUTION-MANAGER
Edit File: integrate_n_steps.hpp
/* [auto_generated] boost/numeric/odeint/integrate/detail/integrate_n_steps.hpp [begin_description] integrate steps implementation [end_description] Copyright 2012-2015 Mario Mulansky Copyright 2012 Christoph Koke Copyright 2012 Karsten Ahnert Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_NUMERIC_ODEINT_INTEGRATE_DETAIL_INTEGRATE_N_STEPS_HPP_INCLUDED #define BOOST_NUMERIC_ODEINT_INTEGRATE_DETAIL_INTEGRATE_N_STEPS_HPP_INCLUDED #include <boost/numeric/odeint/util/unwrap_reference.hpp> #include <boost/numeric/odeint/stepper/stepper_categories.hpp> #include <boost/numeric/odeint/integrate/detail/integrate_adaptive.hpp> #include <boost/numeric/odeint/util/unit_helper.hpp> #include <boost/numeric/odeint/util/detail/less_with_sign.hpp> namespace boost { namespace numeric { namespace odeint { namespace detail { // forward declaration template< class Stepper , class System , class State , class Time , class Observer > size_t integrate_adaptive_checked( Stepper stepper , System system , State &start_state , Time &start_time , Time end_time , Time &dt , Observer observer, controlled_stepper_tag ); /* basic version */ template< class Stepper , class System , class State , class Time , class Observer> Time integrate_n_steps( Stepper stepper , System system , State &start_state , Time start_time , Time dt , size_t num_of_steps , Observer observer , stepper_tag ) { typename odeint::unwrap_reference< Observer >::type &obs = observer; typename odeint::unwrap_reference< Stepper >::type &st = stepper; Time time = start_time; for( size_t step = 0; step < num_of_steps ; ++step ) { obs( start_state , time ); st.do_step( system , start_state , time , dt ); // direct computation of the time avoids error propagation happening when using time += dt // we need clumsy type analysis to get boost units working here time = start_time + static_cast< typename unit_value_type<Time>::type >( step+1 ) * dt; } obs( start_state , time ); return time; } /* controlled version */ template< class Stepper , class System , class State , class Time , class Observer > Time integrate_n_steps( Stepper stepper , System system , State &start_state , Time start_time , Time dt , size_t num_of_steps , Observer observer , controlled_stepper_tag ) { typename odeint::unwrap_reference< Observer >::type &obs = observer; Time time = start_time; Time time_step = dt; for( size_t step = 0; step < num_of_steps ; ++step ) { obs( start_state , time ); // integrate_adaptive_checked uses the given checker to throw if an overflow occurs detail::integrate_adaptive(stepper, system, start_state, time, static_cast<Time>(time + time_step), dt, null_observer(), controlled_stepper_tag()); // direct computation of the time avoids error propagation happening when using time += dt // we need clumsy type analysis to get boost units working here time = start_time + static_cast< typename unit_value_type<Time>::type >(step+1) * time_step; } obs( start_state , time ); return time; } /* dense output version */ template< class Stepper , class System , class State , class Time , class Observer > Time integrate_n_steps( Stepper stepper , System system , State &start_state , Time start_time , Time dt , size_t num_of_steps , Observer observer , dense_output_stepper_tag ) { typename odeint::unwrap_reference< Observer >::type &obs = observer; typename odeint::unwrap_reference< Stepper >::type &st = stepper; Time time = start_time; const Time end_time = start_time + static_cast< typename unit_value_type<Time>::type >(num_of_steps) * dt; st.initialize( start_state , time , dt ); size_t step = 0; while( step < num_of_steps ) { while( less_with_sign( time , st.current_time() , st.current_time_step() ) ) { st.calc_state( time , start_state ); obs( start_state , time ); ++step; // direct computation of the time avoids error propagation happening when using time += dt // we need clumsy type analysis to get boost units working here time = start_time + static_cast< typename unit_value_type<Time>::type >(step) * dt; } // we have not reached the end, do another real step if( less_with_sign( static_cast<Time>(st.current_time()+st.current_time_step()) , end_time , st.current_time_step() ) ) { st.do_step( system ); } else if( less_with_sign( st.current_time() , end_time , st.current_time_step() ) ) { // do the last step ending exactly on the end point st.initialize( st.current_state() , st.current_time() , static_cast<Time>(end_time - st.current_time()) ); st.do_step( system ); } } // make sure we really end exactly where we should end while( st.current_time() < end_time ) { if( less_with_sign( end_time , static_cast<Time>(st.current_time()+st.current_time_step()) , st.current_time_step() ) ) st.initialize( st.current_state() , st.current_time() , static_cast<Time>(end_time - st.current_time()) ); st.do_step( system ); } // observation at final point obs( st.current_state() , end_time ); return time; } } } } } #endif /* BOOST_NUMERIC_ODEINT_INTEGRATE_DETAIL_INTEGRATE_N_STEPS_HPP_INCLUDED */