EVOLUTION-MANAGER
Edit File: sinhc.hpp
// boost sinhc.hpp header file // (C) Copyright Hubert Holin 2001. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org for updates, documentation, and revision history. #ifndef BOOST_SINHC_HPP #define BOOST_SINHC_HPP #ifdef _MSC_VER #pragma once #endif #include <boost/math/tools/config.hpp> #include <boost/math/tools/precision.hpp> #include <boost/math/special_functions/math_fwd.hpp> #include <boost/config/no_tr1/cmath.hpp> #include <boost/limits.hpp> #include <string> #include <stdexcept> #include <boost/config.hpp> // These are the the "Hyperbolic Sinus Cardinal" functions. namespace boost { namespace math { namespace detail { // This is the "Hyperbolic Sinus Cardinal" of index Pi. template<typename T> inline T sinhc_pi_imp(const T x) { #if defined(BOOST_NO_STDC_NAMESPACE) && !defined(__SUNPRO_CC) using ::abs; using ::sinh; using ::sqrt; #else /* BOOST_NO_STDC_NAMESPACE */ using ::std::abs; using ::std::sinh; using ::std::sqrt; #endif /* BOOST_NO_STDC_NAMESPACE */ static T const taylor_0_bound = tools::epsilon<T>(); static T const taylor_2_bound = sqrt(taylor_0_bound); static T const taylor_n_bound = sqrt(taylor_2_bound); if (abs(x) >= taylor_n_bound) { return(sinh(x)/x); } else { // approximation by taylor series in x at 0 up to order 0 T result = static_cast<T>(1); if (abs(x) >= taylor_0_bound) { T x2 = x*x; // approximation by taylor series in x at 0 up to order 2 result += x2/static_cast<T>(6); if (abs(x) >= taylor_2_bound) { // approximation by taylor series in x at 0 up to order 4 result += (x2*x2)/static_cast<T>(120); } } return(result); } } } // namespace detail template <class T> inline typename tools::promote_args<T>::type sinhc_pi(T x) { typedef typename tools::promote_args<T>::type result_type; return detail::sinhc_pi_imp(static_cast<result_type>(x)); } template <class T, class Policy> inline typename tools::promote_args<T>::type sinhc_pi(T x, const Policy&) { return boost::math::sinhc_pi(x); } #ifdef BOOST_NO_TEMPLATE_TEMPLATES #else /* BOOST_NO_TEMPLATE_TEMPLATES */ template<typename T, template<typename> class U> inline U<T> sinhc_pi(const U<T> x) { #if defined(BOOST_FUNCTION_SCOPE_USING_DECLARATION_BREAKS_ADL) || defined(__GNUC__) using namespace std; #elif defined(BOOST_NO_STDC_NAMESPACE) && !defined(__SUNPRO_CC) using ::abs; using ::sinh; using ::sqrt; #else /* BOOST_NO_STDC_NAMESPACE */ using ::std::abs; using ::std::sinh; using ::std::sqrt; #endif /* BOOST_NO_STDC_NAMESPACE */ using ::std::numeric_limits; static T const taylor_0_bound = tools::epsilon<T>(); static T const taylor_2_bound = sqrt(taylor_0_bound); static T const taylor_n_bound = sqrt(taylor_2_bound); if (abs(x) >= taylor_n_bound) { return(sinh(x)/x); } else { // approximation by taylor series in x at 0 up to order 0 #ifdef __MWERKS__ U<T> result = static_cast<U<T> >(1); #else U<T> result = U<T>(1); #endif if (abs(x) >= taylor_0_bound) { U<T> x2 = x*x; // approximation by taylor series in x at 0 up to order 2 result += x2/static_cast<T>(6); if (abs(x) >= taylor_2_bound) { // approximation by taylor series in x at 0 up to order 4 result += (x2*x2)/static_cast<T>(120); } } return(result); } } #endif /* BOOST_NO_TEMPLATE_TEMPLATES */ } } #endif /* BOOST_SINHC_HPP */