EVOLUTION-MANAGER
Edit File: direction_code.hpp
// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2015, 2017, 2019. // Modifications copyright (c) 2015-2019 Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_DIRECTION_CODE_HPP #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_DIRECTION_CODE_HPP #include <boost/geometry/core/access.hpp> #include <boost/geometry/arithmetic/infinite_line_functions.hpp> #include <boost/geometry/algorithms/detail/make/make.hpp> #include <boost/geometry/util/math.hpp> #include <boost/geometry/util/select_coordinate_type.hpp> #include <boost/geometry/util/normalize_spheroidal_coordinates.hpp> #include <boost/mpl/assert.hpp> namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DETAIL namespace detail { template <typename CSTag> struct direction_code_impl { BOOST_MPL_ASSERT_MSG((false), NOT_IMPLEMENTED_FOR_THIS_CS, (CSTag)); }; template <> struct direction_code_impl<cartesian_tag> { template <typename Point1, typename Point2> static inline int apply(Point1 const& segment_a, Point1 const& segment_b, Point2 const& point) { typedef typename geometry::select_coordinate_type < Point1, Point2 >::type calc_t; typedef model::infinite_line<calc_t> line_type; // point b is often equal to the specified point, check that first line_type const q = detail::make::make_infinite_line<calc_t>(segment_b, point); if (arithmetic::is_degenerate(q)) { return 0; } line_type const p = detail::make::make_infinite_line<calc_t>(segment_a, segment_b); if (arithmetic::is_degenerate(p)) { return 0; } // p extends a-b if direction is similar return arithmetic::similar_direction(p, q) ? 1 : -1; } }; template <> struct direction_code_impl<spherical_equatorial_tag> { template <typename Point1, typename Point2> static inline int apply(Point1 const& segment_a, Point1 const& segment_b, Point2 const& p) { typedef typename coordinate_type<Point1>::type coord1_t; typedef typename coordinate_type<Point2>::type coord2_t; typedef typename cs_angular_units<Point1>::type units_t; typedef typename cs_angular_units<Point2>::type units2_t; BOOST_MPL_ASSERT_MSG((boost::is_same<units_t, units2_t>::value), NOT_IMPLEMENTED_FOR_DIFFERENT_UNITS, (units_t, units2_t)); typedef typename geometry::select_coordinate_type <Point1, Point2>::type calc_t; typedef math::detail::constants_on_spheroid<coord1_t, units_t> constants1; typedef math::detail::constants_on_spheroid<coord2_t, units_t> constants2; static coord1_t const pi_half1 = constants1::max_latitude(); static coord2_t const pi_half2 = constants2::max_latitude(); static calc_t const c0 = 0; coord1_t const a0 = geometry::get<0>(segment_a); coord1_t const a1 = geometry::get<1>(segment_a); coord1_t const b0 = geometry::get<0>(segment_b); coord1_t const b1 = geometry::get<1>(segment_b); coord2_t const p0 = geometry::get<0>(p); coord2_t const p1 = geometry::get<1>(p); if ( (math::equals(b0, a0) && math::equals(b1, a1)) || (math::equals(b0, p0) && math::equals(b1, p1)) ) { return 0; } bool const is_a_pole = math::equals(pi_half1, math::abs(a1)); bool const is_b_pole = math::equals(pi_half1, math::abs(b1)); bool const is_p_pole = math::equals(pi_half2, math::abs(p1)); if ( is_b_pole && ((is_a_pole && math::sign(b1) == math::sign(a1)) || (is_p_pole && math::sign(b1) == math::sign(p1))) ) { return 0; } // NOTE: as opposed to the implementation for cartesian CS // here point b is the origin calc_t const dlon1 = math::longitude_distance_signed<units_t, calc_t>(b0, a0); calc_t const dlon2 = math::longitude_distance_signed<units_t, calc_t>(b0, p0); bool is_antilon1 = false, is_antilon2 = false; calc_t const dlat1 = latitude_distance_signed<units_t, calc_t>(b1, a1, dlon1, is_antilon1); calc_t const dlat2 = latitude_distance_signed<units_t, calc_t>(b1, p1, dlon2, is_antilon2); calc_t mx = is_a_pole || is_b_pole || is_p_pole ? c0 : (std::min)(is_antilon1 ? c0 : math::abs(dlon1), is_antilon2 ? c0 : math::abs(dlon2)); calc_t my = (std::min)(math::abs(dlat1), math::abs(dlat2)); int s1 = 0, s2 = 0; if (mx >= my) { s1 = dlon1 > 0 ? 1 : -1; s2 = dlon2 > 0 ? 1 : -1; } else { s1 = dlat1 > 0 ? 1 : -1; s2 = dlat2 > 0 ? 1 : -1; } return s1 == s2 ? -1 : 1; } template <typename Units, typename T> static inline T latitude_distance_signed(T const& lat1, T const& lat2, T const& lon_ds, bool & is_antilon) { typedef math::detail::constants_on_spheroid<T, Units> constants; static T const pi = constants::half_period(); static T const c0 = 0; T res = lat2 - lat1; is_antilon = math::equals(math::abs(lon_ds), pi); if (is_antilon) { res = lat2 + lat1; if (res >= c0) res = pi - res; else res = -pi - res; } return res; } }; template <> struct direction_code_impl<spherical_polar_tag> { template <typename Point1, typename Point2> static inline int apply(Point1 segment_a, Point1 segment_b, Point2 p) { typedef math::detail::constants_on_spheroid < typename coordinate_type<Point1>::type, typename cs_angular_units<Point1>::type > constants1; typedef math::detail::constants_on_spheroid < typename coordinate_type<Point2>::type, typename cs_angular_units<Point2>::type > constants2; geometry::set<1>(segment_a, constants1::max_latitude() - geometry::get<1>(segment_a)); geometry::set<1>(segment_b, constants1::max_latitude() - geometry::get<1>(segment_b)); geometry::set<1>(p, constants2::max_latitude() - geometry::get<1>(p)); return direction_code_impl < spherical_equatorial_tag >::apply(segment_a, segment_b, p); } }; // if spherical_tag is passed then pick cs_tag based on Point1 type // with spherical_equatorial_tag as the default template <> struct direction_code_impl<spherical_tag> { template <typename Point1, typename Point2> static inline int apply(Point1 segment_a, Point1 segment_b, Point2 p) { return direction_code_impl < typename boost::mpl::if_c < boost::is_same < typename geometry::cs_tag<Point1>::type, spherical_polar_tag >::value, spherical_polar_tag, spherical_equatorial_tag >::type >::apply(segment_a, segment_b, p); } }; template <> struct direction_code_impl<geographic_tag> : direction_code_impl<spherical_equatorial_tag> {}; // Gives sense of direction for point p, collinear w.r.t. segment (a,b) // Returns -1 if p goes backward w.r.t (a,b), so goes from b in direction of a // Returns 1 if p goes forward, so extends (a,b) // Returns 0 if p is equal with b, or if (a,b) is degenerate // Note that it does not do any collinearity test, that should be done before template <typename CSTag, typename Point1, typename Point2> inline int direction_code(Point1 const& segment_a, Point1 const& segment_b, Point2 const& p) { return direction_code_impl<CSTag>::apply(segment_a, segment_b, p); } } // namespace detail #endif //DOXYGEN_NO_DETAIL }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_DIRECTION_CODE_HPP