EVOLUTION-MANAGER
Edit File: vector.hpp
/////////////////////////////////////////////////////////////////////////////// /// \file vector.hpp /// // Copyright 2005 Eric Niebler. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_NUMERIC_FUNCTIONAL_VECTOR_HPP_EAN_12_12_2005 #define BOOST_NUMERIC_FUNCTIONAL_VECTOR_HPP_EAN_12_12_2005 #ifdef BOOST_NUMERIC_FUNCTIONAL_HPP_INCLUDED # error Include this file before boost/accumulators/numeric/functional.hpp #endif #include <vector> #include <functional> #include <boost/assert.hpp> #include <boost/mpl/and.hpp> #include <boost/mpl/not.hpp> #include <boost/utility/enable_if.hpp> #include <boost/type_traits/is_same.hpp> #include <boost/type_traits/is_scalar.hpp> #include <boost/type_traits/remove_const.hpp> #include <boost/typeof/std/vector.hpp> #include <boost/accumulators/numeric/functional_fwd.hpp> namespace boost { namespace numeric { namespace operators { namespace acc_detail { template<typename Fun> struct make_vector { typedef std::vector<typename Fun::result_type> type; }; } /////////////////////////////////////////////////////////////////////////////// // Handle vector<Left> / Right where Right is a scalar. template<typename Left, typename Right> typename lazy_enable_if< is_scalar<Right> , acc_detail::make_vector<functional::divides<Left, Right> > >::type operator /(std::vector<Left> const &left, Right const &right) { typedef typename functional::divides<Left, Right>::result_type value_type; std::vector<value_type> result(left.size()); for(std::size_t i = 0, size = result.size(); i != size; ++i) { result[i] = numeric::divides(left[i], right); } return result; } /////////////////////////////////////////////////////////////////////////////// // Handle vector<Left> / vector<Right>. template<typename Left, typename Right> std::vector<typename functional::divides<Left, Right>::result_type> operator /(std::vector<Left> const &left, std::vector<Right> const &right) { typedef typename functional::divides<Left, Right>::result_type value_type; std::vector<value_type> result(left.size()); for(std::size_t i = 0, size = result.size(); i != size; ++i) { result[i] = numeric::divides(left[i], right[i]); } return result; } /////////////////////////////////////////////////////////////////////////////// // Handle vector<Left> * Right where Right is a scalar. template<typename Left, typename Right> typename lazy_enable_if< is_scalar<Right> , acc_detail::make_vector<functional::multiplies<Left, Right> > >::type operator *(std::vector<Left> const &left, Right const &right) { typedef typename functional::multiplies<Left, Right>::result_type value_type; std::vector<value_type> result(left.size()); for(std::size_t i = 0, size = result.size(); i != size; ++i) { result[i] = numeric::multiplies(left[i], right); } return result; } /////////////////////////////////////////////////////////////////////////////// // Handle Left * vector<Right> where Left is a scalar. template<typename Left, typename Right> typename lazy_enable_if< is_scalar<Left> , acc_detail::make_vector<functional::multiplies<Left, Right> > >::type operator *(Left const &left, std::vector<Right> const &right) { typedef typename functional::multiplies<Left, Right>::result_type value_type; std::vector<value_type> result(right.size()); for(std::size_t i = 0, size = result.size(); i != size; ++i) { result[i] = numeric::multiplies(left, right[i]); } return result; } /////////////////////////////////////////////////////////////////////////////// // Handle vector<Left> * vector<Right> template<typename Left, typename Right> std::vector<typename functional::multiplies<Left, Right>::result_type> operator *(std::vector<Left> const &left, std::vector<Right> const &right) { typedef typename functional::multiplies<Left, Right>::result_type value_type; std::vector<value_type> result(left.size()); for(std::size_t i = 0, size = result.size(); i != size; ++i) { result[i] = numeric::multiplies(left[i], right[i]); } return result; } /////////////////////////////////////////////////////////////////////////////// // Handle vector<Left> + vector<Right> template<typename Left, typename Right> std::vector<typename functional::plus<Left, Right>::result_type> operator +(std::vector<Left> const &left, std::vector<Right> const &right) { typedef typename functional::plus<Left, Right>::result_type value_type; std::vector<value_type> result(left.size()); for(std::size_t i = 0, size = result.size(); i != size; ++i) { result[i] = numeric::plus(left[i], right[i]); } return result; } /////////////////////////////////////////////////////////////////////////////// // Handle vector<Left> - vector<Right> template<typename Left, typename Right> std::vector<typename functional::minus<Left, Right>::result_type> operator -(std::vector<Left> const &left, std::vector<Right> const &right) { typedef typename functional::minus<Left, Right>::result_type value_type; std::vector<value_type> result(left.size()); for(std::size_t i = 0, size = result.size(); i != size; ++i) { result[i] = numeric::minus(left[i], right[i]); } return result; } /////////////////////////////////////////////////////////////////////////////// // Handle vector<Left> += vector<Left> template<typename Left> std::vector<Left> & operator +=(std::vector<Left> &left, std::vector<Left> const &right) { BOOST_ASSERT(left.size() == right.size()); for(std::size_t i = 0, size = left.size(); i != size; ++i) { numeric::plus_assign(left[i], right[i]); } return left; } /////////////////////////////////////////////////////////////////////////////// // Handle -vector<Arg> template<typename Arg> std::vector<typename functional::unary_minus<Arg>::result_type> operator -(std::vector<Arg> const &arg) { typedef typename functional::unary_minus<Arg>::result_type value_type; std::vector<value_type> result(arg.size()); for(std::size_t i = 0, size = result.size(); i != size; ++i) { result[i] = numeric::unary_minus(arg[i]); } return result; } } namespace functional { struct std_vector_tag; template<typename T, typename Al> struct tag<std::vector<T, Al> > { typedef std_vector_tag type; }; /////////////////////////////////////////////////////////////////////////////// // element-wise min of std::vector template<typename Left, typename Right> struct min_assign<Left, Right, std_vector_tag, std_vector_tag> { typedef Left first_argument_type; typedef Right second_argument_type; typedef void result_type; void operator ()(Left &left, Right &right) const { BOOST_ASSERT(left.size() == right.size()); for(std::size_t i = 0, size = left.size(); i != size; ++i) { if(numeric::less(right[i], left[i])) { left[i] = right[i]; } } } }; /////////////////////////////////////////////////////////////////////////////// // element-wise max of std::vector template<typename Left, typename Right> struct max_assign<Left, Right, std_vector_tag, std_vector_tag> { typedef Left first_argument_type; typedef Right second_argument_type; typedef void result_type; void operator ()(Left &left, Right &right) const { BOOST_ASSERT(left.size() == right.size()); for(std::size_t i = 0, size = left.size(); i != size; ++i) { if(numeric::greater(right[i], left[i])) { left[i] = right[i]; } } } }; // partial specialization for std::vector. template<typename Left, typename Right> struct fdiv<Left, Right, std_vector_tag, void> : mpl::if_< are_integral<typename Left::value_type, Right> , divides<Left, double const> , divides<Left, Right> >::type {}; // promote template<typename To, typename From> struct promote<To, From, std_vector_tag, std_vector_tag> { typedef From argument_type; typedef To result_type; To operator ()(From &arr) const { typename remove_const<To>::type res(arr.size()); for(std::size_t i = 0, size = arr.size(); i != size; ++i) { res[i] = numeric::promote<typename To::value_type>(arr[i]); } return res; } }; template<typename ToFrom> struct promote<ToFrom, ToFrom, std_vector_tag, std_vector_tag> { typedef ToFrom argument_type; typedef ToFrom result_type; ToFrom &operator ()(ToFrom &tofrom) const { return tofrom; } }; /////////////////////////////////////////////////////////////////////////////// // functional::as_min template<typename T> struct as_min<T, std_vector_tag> { typedef T argument_type; typedef typename remove_const<T>::type result_type; typename remove_const<T>::type operator ()(T &arr) const { return 0 == arr.size() ? T() : T(arr.size(), numeric::as_min(arr[0])); } }; /////////////////////////////////////////////////////////////////////////////// // functional::as_max template<typename T> struct as_max<T, std_vector_tag> { typedef T argument_type; typedef typename remove_const<T>::type result_type; typename remove_const<T>::type operator ()(T &arr) const { return 0 == arr.size() ? T() : T(arr.size(), numeric::as_max(arr[0])); } }; /////////////////////////////////////////////////////////////////////////////// // functional::as_zero template<typename T> struct as_zero<T, std_vector_tag> { typedef T argument_type; typedef typename remove_const<T>::type result_type; typename remove_const<T>::type operator ()(T &arr) const { return 0 == arr.size() ? T() : T(arr.size(), numeric::as_zero(arr[0])); } }; /////////////////////////////////////////////////////////////////////////////// // functional::as_one template<typename T> struct as_one<T, std_vector_tag> { typedef T argument_type; typedef typename remove_const<T>::type result_type; typename remove_const<T>::type operator ()(T &arr) const { return 0 == arr.size() ? T() : T(arr.size(), numeric::as_one(arr[0])); } }; } // namespace functional }} // namespace boost::numeric #endif